吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1217-1223.doi: 10.13278/j.cnki.jjuese.20200031

• 地质工程与环境工程 • 上一篇    下一篇

基于绿色生物模板电极的微囊藻毒素-LR快速检测

朴云仙, 姚兰, 何凌志, 张彧   

  1. 吉林大学新能源与环境学院/地下水资源与环境教育部重点实验室(吉林大学), 长春 130021
  • 收稿日期:2020-02-15 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:朴云仙(1979-),女,教授,博士生导师,主要从事纳米生物催化环境修复、环境监测和生物传感器方面的研究,E-mail:yxpiao@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51809111)

Rapid Detection of Microcystin-LR Based on Green Biotemplated Electrode

Piao Yunxian, Yao Lan, He Lingzhi, Zhang Yu   

  1. College of New Energy and Environment, Jilin University/Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
  • Received:2020-02-15 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (51809111)

摘要: 为实现水环境中微囊藻毒素的高性能检测,利用农业废弃物合成了具导电性能的生物炭颗粒,并将其作为导电材料构建了对微囊藻毒素-LR具电化学免疫检测性能的生物模板电极。实验结果表明:该电极具有很好的电催化性能,在电解液中,能够在短时间(5 min)内有效识别微囊藻毒素-LR的存在;利用差分脉冲伏安法检测发现在0.0~5.0 nmol/L的检测范围内毒素浓度与响应电流值呈线性递减关系,且最低检测浓度为0.2 nmol/L。该电极对各类不相关分子及离子具有抗干扰能力,表明了该方法可应用于对微囊藻毒素-LR污染的快速、特异性检测。

关键词: 生物炭, 微囊藻毒素-LR, 电化学检测

Abstract: For the effective detection of microcystin-LR (MCLR) in environmental water, in this study, the biochar particles were prepared from agricultural wastes,and it was utilized for the construction of a biotemplated electrode with electrochemical immunoassay capability toward microcystin-LR by differential pulse voltammetry. It is found that the electrode can identify the presence of microcystin-LR effectively in a short time (5 min), the linear detection range is 0.0-5.0 nmol/L and the lowest detection limit is 0.2 nmol/L. The electrode is also anti-interfere to various unrelated molecules and ions, indicating that the electrode can be used for fast and effective detection of microcystin-LR.

Key words: biochar, microcystin-LR, electrochemical detection

中图分类号: 

  • X502
[1] Han J H, Zhang J P, Xia Y T, et al. Highly Sensitive Detection of the Hepatotoxin Microcystin-LR by Surface Modification and Bio-nanotechnology[J]. Colloids and Surfaces:A:Physicochemical and Engineering Aspects, 2011, 391:184-189.
[2] 宋兴良,冯晓阳,李娜. 分散液液微萃取气相色谱-质谱法测定水体中痕量的微囊藻毒素[J]. 临沂大学学报, 2019, 41(6):1-8. Song Xingliang, Feng Xiaoyang, Li Na. Determination of Trace Microcystis Toxin in Water by Dispersive Liquid-Liquid Microextraction Gas Chromatography-Mass Spectrometry[J]. Journal of Linyi University, 2019, 41(6):1-8.
[3] Wang Y, Liu H, Liu X, et al. Histone Acetylation Plays an Important Role in MC-LR Induced Apoptosis and Cycle Disorder in Sd Rat Testicular Cells[J]. Chemosphere, 2020, 241:125073.
[4] 张俊,孟宪智,张世禄,等. 海河流域地表水中微囊藻毒素的测定[J]. 环境监测管理与技术, 2019, 31(5):40-42. Zhang Jun, Meng Xianzhi, Zhang Shilu, et al. Determination of Microcystin in Surface Water in Haihe River Basin[J]. Environmental Monitoring Management and Technology, 2019, 31(5):40-42.
[5] Zanato N, Talamini L, Silva T R, et al. Microcystin-LR Label-Free Immunosensor Based on Exfoliated Graphite Nanoplatelets and Silver Nanoparticles[J]. Talanta, 2017, 175:38-45.
[6] Zhao L F, Teng L, Zhang J, et al. Point-of-Care Detection of Microcystin-LR with a Personal Glucose Meter in Drinking Water Source[J]. Chinese Chemical Letters, 2019, 30(5):1035-1037.
[7] Covaci O I, Sassolas A, Alonso G A, et al. Highly Sensitive Detection and Discrimination of LR and YR Microcystins Based on Protein Phosphatases and an Artificial Neural Network[J]. Analytical and Bioanalytical Chemistry, 2012, 404(3):711-720.
[8] Loyprasert S, Thavarungkul P, Asawatreratanakul P, et al. Label-Free Capacitive Immunosensor for Microcystin-LR Using Self-Assembled Thiourea Monolayer Incorporated with Ag Nanoparticles on Gold Electrode[J]. Biosensors and Bioelectronics, 2008, 24(1):78-86.
[9] Zhang W, Han C S, Jia B P, et al. A 3D Graphene-Based Biosensor as an Early Microcystin-LR Screening Tool in Sources of Drinking Water Supply[J]. Electrochimica Acta, 2017, 236:319-327.
[10] 徐海滨,孙明,隋海霞, 等. 江西鄱阳湖微囊藻毒素污染及其在鱼体内的动态研究[J]. 卫生研究, 2003(3):192-194. Xu Haibin, Sun Ming, Sui Haixia, et al. Microcystin Contamination of Fish on Poyang Lake in Jiangxi Province[J]. Journal of Hygiene Research, 2003(3):192-194.
[11] 吴和岩, 郑力行, 苏瑾,等. 上海市供水系统微囊藻毒素LR含量调查[J]. 卫生研究, 2005(2):152-154. Wu Heyan, Zheng Lixing, Su Jin, et al. Survey on the Contamination of Microcystin-LR in Water Supply of Shanghai City[J]. Journal of Hygiene Research, 2005(2):152-154.
[12] 何岸檐, 杨伟, 周倩如,等. 重庆市城镇集中式供水水源水中微囊藻毒素污染健康风险评估[J]. 中国卫生检验杂志, 2019, 29(15):1881-1883. He Anyan, Yang Wei, Zhou Qianru, et al. Health Risk Assessment of Microcystis Pollution in Centralized Water Source in Chongqing[J]. Chinese Journal of Health Laboratory Technology, 2019, 29(15):1881-1883.
[13] Zhang L, Ping X, Yang Z. Determination of Microcystin-LR in Surface Water Using High-Performance Liquid Chromatography/Tandem Electrospray Ionization Mass Detector[J]. Talanta, 2004, 62(1):191-198.
[14] Wang S, Ge L, Song X, et al. Paper-Based Chemiluminescence ELISA:Lab-on-Paper Based on Chitosan Modified Paper Device and Wax-Screen-Printing[J]. Biosensors and Bioelectronics, 2012, 31(1):212-218.
[15] Zhang G P, Li C, Wu S Q, et al. Label-Free Aptamer-Based Detection of Microcystin-LR Using a Microcantilever Array Biosensor[J]. Sensors and Actuators:B:Chemical, 2018(260):42-47.
[16] Sassolas A, Catanante G, Fournier D, et al. Development of a Colorimetric Inhibition Assay for Microcystin-LR Detection:Comparison of the Sensitivity of Different Protein Phosphatases[J]. Talanta, 2011, 85(5):2498-2503.
[17] 朴云仙,祁小丽,王湘,等.基于核酸适配体功能化石墨纳米颗粒荧光探针的17β-雌二醇快速检测方法[J].吉林大学学报(地球科学版),2019, 49(4):1137-1144. Piao Yunxian, Qi Xiaoli, Wang Xiang, et al. Rapid Detection of 17β-Estradiol Based on Fluorescent Probe of Functionalized Graphite Nanoparticle with Aptamer[J]. Journal of Jilin University (Earth Science Edition),2019,49(4):1137-1144.
[18] Chen X, Zhang K, Zhou J, et al. Electrochemical Immunosensor Based on Colloidal Carbon Sphere Array[J]. Biosensors and Bioelectronics, 2010, 25(5):1130-1136.
[19] Dong X W, He L Z, Hu H, et al. Removal of 17β-Estradiol by Using Highly Adsorptive Magnetic Biochar Nanoparticles from Aqueous Solution[J]. Chemical Engineering Journal, 2018, 352:371-379.
[20] He L Z, Yang Y S, Kim J B, et al. Multi-Layered Enzyme Coating on Highly Conductive Magnetic Biochar Nanoparticles for Bisphenol a Sensing in Water[J]. Chemical Engineering Journal, 2020, 384:123276.
[21] Weller M G. Immunoassays and Biosensors for the Detection of Cyanobacterial Toxins in Water[J]. Sensors (Basel), 2013, 13(11):15085-15112.
[22] Wang L B, Ma W, Xu L G, et al. Nanoparticle-Based Environmental Sensors[J]. Materials Science and Engineering:R:Reports, 2010, 70(3/4/5/6):265-274.
[23] Wang L, Chen W, Xu D, et al. Simple, Rapid, Sensitive, and Versatile SWNT-Paper Sensor for Environmental Toxin Detection Competitive with ELISA[J]. Nano Lett, 2009, 9(12):4147-4152.
[24] Eissa S, Ng A, Siaj M, et al. Label-Free Voltammetric Aptasensor for the Sensitive Detection of Microcystin-LR Using Graphene-Modified Electrodes[J]. Analytical Chemistry, 2014, 86(15):7551-7557.
[25] Taghdisi S M, Danesh N M, Ramezani M, et al. A Novel Fluorescent Aptasensor for Ultrasensitive Detection of Microcystin-LR Based on Single-Walled Carbon Nanotubes and Dapoxyl[J]. Talanta, 2017, 166:187-192.
[26] Zhang Y L, Chen M, Li H Y, et al. A Molybdenum Disulfide/Gold Nanorod Composite-Based Electrochemical Immunosensor for Sensitive and Quantitative Detection of Microcystin-LR in Environmental Samples[J]. Sensors and Actuators:B:Chemical, 2017, 244:606-615.
[27] Gao Y, Pramanik A, Begum S, et al. Multifunctional Biochar for Highly Efficient Capture, Identification, and Removal of Toxic Metals and Superbugs from Water Samples[J]. ACS Omega, 2017, 2(11):7730-7738.
[28] Tan X, Liu Y, Zeng G, et al. Application of Biochar for the Removal of Pollutants from Aqueous Solutions[J]. Chemosphere, 2015, 125:70-85.
[29] Dong X W, He L Z, Liu Y, et al. Preparation of Highly Conductive Biochar Nanoparticles for Rapid and Sensitive Detection of 17Β-Estradiol in Water[J]. Electrochimica Acta, 2018, 292:55-62.
[30] Dong X W, He L Z, Hu H, et al. Removal of 17Β-Estradiol by Using Highly Adsorptive Magnetic Biochar Nanoparticles from Aqueous Solution[J]. Chemical Engineering Journal, 2018, 352:371-379.
[1] 王晟, 冯翔, 李兵, 郭林, 曹坤, 刘鹏. 多种铁改性和未改性生物炭对模拟地下水中六价铬的去除[J]. 吉林大学学报(地球科学版), 2021, 51(1): 247-255.
[2] 刘娜,王柳,邱华,Alberto Bento Charrua,王航,王锐. 生物炭催化过硫酸盐脱色偶氮染料金橙Ⅱ[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2000-2009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .