吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 561-570.doi: 10.13278/j.cnki.jjuese.20200038

• 地球探测与信息技术 • 上一篇    

基于速度分析的探地雷达阻抗介电常数反演

王天琪1, 李静1,2, 白利舸1, 李晶3, 李飞达4   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 地球信息探测仪器教育部重点实验室(吉林大学), 长春 130026;
    3. 重庆大学土木工程学院, 重庆 400000;
    4. 吉林省勘查地球物理研究院, 长春 130062
  • 收稿日期:2020-05-19 发布日期:2021-04-06
  • 作者简介:王天琪(1996-),男,硕士研究生,主要从事探地雷达反演方法研究,E-mail:wangtq19@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41874134);吉林省优秀青年人才基金(20190103142JH);中国科协青年托举人才项目(2019QNRC001);吉林省科技发展项目(20200201216JC)

GPR Impedance Inversion of Permittivity Based on Velocity Analysis

Wang Tianqi1, Li Jing1,2, Bai Lige1, Li Jing3, Li Feida4   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Key Laboratory of Geophysical Exploration Equipment, Ministry of Education(Jilin University), Changchun 130026, China;
    3. College of Civil Engineering, Chongqing University, Chongqing 400000, China;
    4. Jilin Geophysics Prospecting Institute, Changchun 130062, China
  • Received:2020-05-19 Published:2021-04-06
  • Supported by:
    Supported by the National Natural Science Foundation of China (41874134), the Foundation for Excellent Young Scho-lars of Jilin Province (20190103142JH), the Youth Talent Project of China Association for Science and Technology (2019QNRC001) and the Technology Development Program of Jilin Province (20200201216JC)

摘要: 阻抗反演是利用波阻抗与介电常数关系开展地下介质参数估计的重要技术,在探地雷达以及叠后地震资料解释中具有广泛的应用。常规阻抗反演需要钻孔或测井曲线作为约束项,约束项信息直接影响阻抗反演的估计精度。在缺少钻孔数据的实际应用中,如何开展探地雷达阻抗反演是该方法研究的重要内容之一。基于上述问题,本文提出了基于速度分析的探地雷达阻抗反演方法。其基本思想是基于多偏移距雷达数据开展速度谱分析和Dix反演,以获得不同深度的速度信息作为阻抗反演的约束项;同时,采用K-means方法自动拾取速度谱信息,大大降低了常规人工拾取误差,提高了计算效率。通过典型随机土壤介质模型,验证了本文方法在无钻孔条件下仍然可以获得较好的介电常数估计结果,并测试噪声适应能力强。最后通过美国密歇根州Wurtsmith AFB,in Oscoda区域的探地雷达数据测试了本文提出方法在探地雷达实测数据参数估计中具有较好的应用效果。

关键词: K-means法速度分析, 探地雷达, 阻抗反演, 约束, 介电常数

Abstract: Impedance inversion is an important technique for estimating the parameters of underground media using the relationship between wave impedance and dielectric constant, which is widely used in GPR and post-stack seismic data interpretation. Conventional impedance inversion requires drilling or logging parameters as constraints, which directly affect the estimation accuracy of the final impedance inversion. In the practical application with lack of borehole data, how to carry out GPR impedance inversion is one of the important contents of the method. To solve the above problems, the authors proposed a GPR impedance inversion method based on velocity analysis. The basic idea is to carry out velocity spectrum analysis and Dix inversion based on multiple offset radar data to obtain velocity information of different depths as the constraint term of impedance inversion. At the same time, the K-means method can automatically pick up the velocity spectrum information, so as to greatly reduce the conventional manual picking error and improve the calculation efficiency. Through a typical random soil medium model, it is verified that the method can also obtain better dielectric constant estimation results without drilling data, and can test noise adaptability effectively. Based on the GPR data acquired from Wurtsmith AFB, in Oscoda area, Michigan, the method proposed in this paper has a good application effect in the parameter estimation of GPR measured data.

Key words: K-means velocity analysis, GPR, impedance inversion, constraints, permittivity

中图分类号: 

  • P631
[1] Hansen T B, Johansen P M. Inversion Scheme for Ground-Penetrating Radar that Takes into Account the Planar Air-Soil Interface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1):496-506.
[2] 张进铎. 地震解释技术现状及发展趋势[J].地球物理学进展, 2006, 37(2):578-587. Zhang Jinduo. CurrentSituation and Development Trend of Seismic Interpretation Technology[J]. Progress in Geophysics, 2006,37(2):578-587.
[3] Schmelzbach C, Tronicke J, Dietrich P. High-Resolution Water Content Estimation from Surface-Based Ground-Penetrating Radar Reflection Data by Impedance Inversion[J].Water Resources Research, 2012, 48(8):64-69.
[4] Li J, Zeng Z, Chen L, et al. Estimation of Mixed Soil Water Content by Impedance Inversion of GPR Data[C]//Proceedings of the 15th International Conference on Ground Penetrating Radar. Brussels:IEEE, 2014:149-154.
[5] Zeng Z F, Chen X, Li J, et al. Recursive Impedance Inversion of Ground-Penetrating Radar Data in Stochastic Media[J]. Applied Geophysics, 2015, 12(4):615-625.
[6] Liu Y, Shi Z, Wang B, et al.GPR Impedance Inversion for Imaging and Characterization of Buried Archaeological Remains:A Case Study at Mudu City Cite in Suzhou, China[J]. Journal of Applied Geophysics, 2018, 148:226-233.
[7] 佘松盛. 探地雷达方法对近地表LNAPL污染物的探测研究[D].长春:吉林大学, 2019. She Songsheng. Study on Near-Surface the LNAPL Pollution by GPR Method[D].Changchun:Jilin University, 2019.
[8] 王焱,鹿琪,刘财,等. 利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤[J]. 吉林大学学报(地球科学版), 2018, 48(2):491-500. Wang Yan, Lu Qi, Liu Cai, et al. Using GPR Antenna-Target Polarization Instantaneous Attribute Analysis Method to Detect LNAPL Contaminated Soil[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):491-500.
[9] 王春辉. 探地雷达方法测量近地表含水量及污染物探测研究[D].长春:吉林大学, 2007. Wang Chunhui. Near Surface Water Content Measurement and Contamination Detection Using Ground-Penetrating Radar:A Simulation Study[D]. Changchun:Jilin University, 2007.
[10] Forte E, Pipan M. Review of Multi-Offset GPR Applications:Data Acquisition, Processing and Analysis[J].Signal Processing, 2017, 132:210-220.
[11] Parsekian A D. Inverse Methods to Improve Accuracy of Water Content Estimates from Multi-Offset GPR Parsekian:Improved Accuracy of Water Content from GPR[J].Journal of Environmental and Engineering Geophysics, 2018, 23(3):349-361.
[12] 董泽君,鹿琪,冯晅,等. 探地雷达测量土壤含水量的应用研究[J].地球物理学进展, 2017, 32(5):2207-2213. Dong Zejun, Lu Qi, Feng Xuan, et al. Estimation of Soil Water Content Using Ground Penetrating Radar[J]. Progress in Geophysics, 2017, 32(5):2207-2213.
[13] 蔡佳琪. 利用探测雷达探测铁路路基含水率[D].长春:吉林大学, 2017. Cai Jiaqi. Detection Railway Subgrade Moisture Content by GPR[D].Changchun:Jilin University, 2017.
[14] Chen Yuqing, Gerard S. Automatic Semblance Picking by a Bottom-Up Clustering Method[C]//SEG 2018 Workshop:SEG Maximizing Asset Value Through Artificial Intelligence and Machine Learning. Beijing:SEG, 2018:27-30.
[15] Bradford J H.GPR Offset Dependent Reflectivity Analysis for Characterization of a High-Conductivity LNAPL Plume[C]//16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. San Abtonio:SEG, 2003:238-252.
[16] Bermejo J L, Sauck W A, Atekwana E A. Geophysical Discovery of a New LNAPL Plume at the Former Wurtsmith AFB, Oscoda, Michigan[J]. Groundwater Monitoring & Remediation, 1997, 17(4):131-137.
[17] Annan A P. Ground-Penetrating Radar[M]//Near-Surface Geophysics. Tulsa:Society of Exploration Geophysicists, 2005:357-438.
[18] 刘钰. 探地雷达数据波阻抗反演方法及其应用研究[D].杭州:浙江大学, 2018. Liu Yu. The Study of Ground Penetrating Radar Impendance Inversion Method and Its Application[D]. Hangzhou:Zhejiang University, 2018.
[19] 刘钰,石战结,王帮兵,等. 探地雷达子波确定性稀疏脉冲反褶积技术[J]. 浙江大学学报(工学版), 2018, 52(9):1828-1836. Liu Yu, Shi Zhanjie, Wang Bangbing, et al. Deterministic-Wavelet Sparse Spike Deconvolution Technique for Ground Penetrating[J]. Journal of Zhejiang University (Engineering Edition), 2018, 52(9):1828-1836.
[20] 康治梁,张雪冰. 基于L1/2正则化理论的地震稀疏反褶积[J]. 石油物探, 2019, 58(6):855-863. Kang Zhiliang, Zhang Xuebing. Seismic Sparse Deconvolution Based on L1/2 Regularization[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):855-863.
[21] 王铁兴,王德利,孙婧,等. 基于三维稀疏反演的混合震源数据分离与一次波估计[J]. 吉林大学学报(地球科学版), 2020, 50(3):895-904. Wang Tiexing, Wang Deli, Sun Jing, et al. Separation and Primary Estimation of Blended Data by 3D Sparse Inversion[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3):895-904.
[22] Li G F, Qin D H, Peng G X, et al. Experimental Analysis and Application of Sparsity Constrained Deconvolution[J].Applied Geophysics, 2013, 10(2):191-200.
[23] 李静. 随机等效介质探地雷达探测技术和参数反演[D]. 长春:吉林大学, 2014. Li Jing. Ground Penetrating Radar Detection and Parameter Inversion in Stochastic Effective Medium[D]. Changchun:Jilin University, 2014.
[24] Dix C H. Seismic Velocities from Surface Measurements[J].Geophysics, 1955, 20(1):68-86.
[1] 罗永超, 李桐林, 张镕哲. 三维重力梯度局部光滑约束反演[J]. 吉林大学学报(地球科学版), 2021, 51(2): 543-551.
[2] 梁生贤. 互相关系数自约束的重力三维反演与高效求解[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1473-1482.
[3] 梁文婧, 冯晅, 刘财, 恩和得力海, 张明贺, 梁帅帅. 多输入多输出极化步进频率探地雷达硬件系统开发[J]. 吉林大学学报(地球科学版), 2018, 48(2): 483-490.
[4] 王文天, 刘四新, 鹿琪, 李宏卿, 傅磊. 基于改进残差法的定向钻孔雷达三维成像算法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 402-410.
[5] 冯晅, 梁帅帅, 恩和得力海, 张明贺, 董泽君, 周皓秋, 齐嘉慧, 赵玮昌. 全极化探地雷达地下管道分类识别技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 364-372.
[6] 王宪楠, 刘四新, 程浩. Shearlet变换在GPR数据随机噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1855-1864.
[7] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[8] 吴有平, 张可能, 刘杰, 何杰. 侧向约束下柔性桩复合地基沉降特性[J]. 吉林大学学报(地球科学版), 2017, 47(3): 818-825.
[9] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[10] 吴志春, 郭福生, 林子瑜, 侯曼青, 罗建群. 三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1895-1913.
[11] 孟庆生, 韩凯, 刘涛, 高镇. 软土基坑隔水帷幕渗漏检测技术[J]. 吉林大学学报(地球科学版), 2016, 46(1): 295-302.
[12] 殷长春, 邱长凯, 刘云鹤, 蔡晶. 时间域航空电磁数据加权横向约束反演[J]. 吉林大学学报(地球科学版), 2016, 46(1): 254-261.
[13] 薛林福,李文庆,张伟,柴社立,刘正宏. 分块区域三维地质建模方法[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2051-2058.
[14] 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726.
[15] 林君,慧芳,孙淑琴,蒋川东,林婷婷. 基于不等式约束的磁共振信号T2谱多指数分解法及算法改进[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2018-2025.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!