吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 633-644.doi: 10.13278/j.cnki.jjuese.201702307

• 地球探测与信息技术 • 上一篇    

阵列式探地雷达信号极化场特征

习建军1,2, 曾昭发1, 黄玲3, 崔丹丹2, 王者江1   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 河北省电力勘测设计研究院, 石家庄 050031;
    3. 中国科学院电子学研究所, 北京 100190
  • 收稿日期:2016-12-19 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:习建军(1982),男,高级工程师,博士,主要从事工程物探及电力勘测方面的研究,E-mail:tiantianhappy365@126.com
  • 基金资助:
    国家自然科学基金项目(40774055,41174097,41574097);高等学校博士学科点专项科研基金项目(20130061110060)

Characteristics of the Signal Polarization Field in Array Type Ground Penetrating Radar

Xi Jianjun1,2, Zeng Zhaofa1, Huang Ling3, Cui Dandan2, Wang Zhejiang1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Heibei Electric Power Design & Research Institute, Shijiazhuang 050031, China;
    3. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-12-19 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (40774055, 41174097, 41574097) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130061110060)

摘要: 阵列式观测是探地雷达系统研制和新型探测方法的一个重要发展趋势,而同形多源并发地下目标响应特征分析成为系统研制和数据处理研究的基础和前提。阵列式天线的多源并发信号及目标反射信号存在复杂的极化特性,但同时也包含更多目标特征的响应信息。本文针对基于似平面波探地雷达系统,分析了目标体在极化平面波照射下的响应特征,从多极化信号角度分析典型地下目标体形态特征;并采用时域有限差分正演分析方法,通过对阵列天线接收到的数据沿时间轴进行积分来获得目标在地表投影的分布情况,分析了一维及二维分布的收发天线阵列对目标的检测。研究成果表明,多极化综合特征分析能够有效改善目标检测的稳定性,提高目标响应信号的信噪比,减弱天线方向图和目标散射截面闪烁对数据剖面的影响,降低数据处理和解释的难度。

关键词: 阵列天线, MIMO探地雷达, 稳定性, 信噪比, 散射截面闪烁

Abstract: With the trend of the detection method using array observation, the GPR(ground penetrating radar) system takes the response characteristic analysis for the isomorphic multisource concurrent underground target as the basis and precondition for the system development and data processing. The multisource concurrent signal and target echo signal of the array antenna with complicated polarization characteristics, contain more response message about the target characteristics. Aiming at the plane wave like MIMO(multiple-input multiple-output) GPR system, this paper analyzes the response characteristics of the target in polarization plane wave illumination and the morphological characteristics of the model underground target through its multi-polarization signal. The surface projection distribution of the target is acquired through the integration along time axis of the data received by the array antenna, and the targets of the transmit-receive array antenna in 1-D and 2-D distribution are detected and analyzed by the time domain finite-difference forward modeling method. The research results that multi-polarization integrated characteristic analysis can improve effectively the consistency of the target detection, promote the signal to noise ratio (SNR) of the target response signal, abate the influence from the antenna pattern and target scattering cross-section blink upon the data section, and decrease the difficulty in data processing and interpretation.

Key words: array antenna, MIMO GPR, stability, signal to noise ratio, scattering cross-section blink

中图分类号: 

  • P631.3
[1] 周奇才, 崔涛, 叶琛. 盾构施工超前探测与GPR天线阵技术应用[J]. 建筑机械化, 2006, 27(9):40-42. Zhou Qicai, Cui Tao, Ye Chen. Antecedent Exploration of Shield Machine & Application of GPR Antenna Array[J]. Construction Mechanization, 2006, 27(9):40-42.
[2] Sato M, Feng X. GPR Migration Algorithm for Land-mines Buried in Inhomogeneous Soil[J]. Antennas and Propagation Society International Symposium, 2005, 1B:206-209.
[3] Fishler E, Haimovich A, Blum R, et al. Spatial Diver-sity in Radar-Models and Detection Performance[J]. IEEE Trans Signal Proces, 2006, 54(3):823-838.
[4] Haimovich A M, Blum R S, Cimini L J. MIMO Radar with Widely Separated Antennas[J]. Signal Processing Magazine IEEE, 2008, 25(1):116-129.
[5] 曲昕馨,李桐林,王飞. 基于数字图像分割法的跨孔雷达走时层析成像[J]. 吉林大学学报(地球科学版),2014, 43(4):1340-1347. Qu Xinxin, Li Tonglin, Wang Fei. Cross-Hole Radar Travel-Time Tomography Based on Digital Image Segmentation[J]. Journal of Jilin University (Earth Science Edition), 2014, 43(4):1340-1347.
[6] 朱自强,彭凌星,鲁光银. 基于互相关函数对钻孔雷达层析成像的改进[J]. 吉林大学学报(地球科学版),2014, 43(2):668-674. Zhu Ziqiang, Peng Lingxing, Lu Guangyin. Improved Borehole-GPR Tomography Based on Cross-Correlation[J]. Journal of Jilin University (Earth Science Edition), 2014, 43(2):668-674.
[7] 冉利民,刘四新,李玉喜,等. 影响跨孔雷达层析成像效果的几个因素[J]. 吉林大学学报(地球科学版),2013, 43(5):1672-1680. Ran Limin, Liu Sixin, Li Yuxi, et al. Several Factors Affecting Cross-Hole Radar Tomography[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(5):1672-1680.
[8] Zeng Zhaofa,Li Jing,Huang Ling,et al. Improving Target Detection Accuracy Based on Multipolarization MIMO GPR[J]. IEEE Transactions on Geosciences and Remote Sensing, 2015, 53(1):15-24.
[9] Xu Xiaoyin, Miller E L, Sower G. A Statistical Approach to Multichannel Blind Signal Detection for Ground Penetrating Radar Arrays[C]//Sensor Array and Multichannel Signal Processing Workshop.[S. l.]:IEEE, 2000:449-453.
[10] Xu X, Peng S, Xia Y, et al. The Development of a Multi-Channel GPR System for Roadbed Damage Detection[J]. Microelectronics Journal, 2014, 45(11):1542-1555.
[11] Xu Xiaoyin, Miller E L, Rappaport C M, et al. Statistical Method to Detect Subsurface Objects Using Array Ground-Penetrating Radar Data[J]. Geoscience and Remote Sensing, 2002, 40(4):963-976.
[12] Sato M, Fang Guangyou, Zeng Zhaofa. Landmine Detection by a Broadband GPR System[C]//Geoscience and Remote Sensing Symposium.[S. l.]:IEEE, 2003:758-760.
[13] Feng Xuan, Sato M, Zhang Yan,et al. CMP Antenna Array GPR and Signal-to-Clutter Ratio Improvement[J]. Geoscience and Remote Sensing Letters, 2009, 6(1):23-27.
[14] Soliman M, Wu Z. Design. Simulation and Implemen-tation of UWB Antenna Array and It's Application in GPR Systems[C]//The Second European Conference on Antennas and Propagation.[S. l.]:IET, 2007:1-5.
[15] Savelyev T, Yarovoy A, Ligthart L. Experimental Evaluation of an Array GPR for Landmine Detection[C]//Microwave Conference.[S. l.]:IEEE, 2007:1499-1502.
[16] Gao H, Wang J, Jiang C, et al. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection[J]. Sensors, 2014, 14(11):20165-20187.
[17] Zhuge X, Savelyev T G, Yarovoy A G, et al. Sub-surface Imaging with UWB Linear Array:Evaluation of Antenna Step and Array Aperture[C]//2007 IEEE International Conference on Ultra-Wideband.[S. l.]:IEEE, 2007:66-70.
[18] Yarovoy A G, Savelyev T G, Aubry P J, et al. UWB Array-Based Sensor for Near-Field Imaging[J]. 2007, 55(6):1288-1295.
[19] Paglieroni D W, Pechard C T, Beer N R. Change Detection in Constellations of Buried Objects Extracted from Ground-Penetrating Radar Data[J]. Geoscience & Remote Sensing IEEE Transactions on, 2015, 53(5):2426-2439.
[20] Gader P, Keller J M, Frigui H, et al. Landmine Detection Using Fuzzy Sets with GPR Images[C]//Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence.[S. l.]:IEEE, 1998:232-236.
[21] Das U, Boer H J, Van Ardenne A. Phased Array Technology for GPR Antenna Design for Near Subsurface Exploration[C]//Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar.[S. l.]:IEEE, 2003:30-35.
[22] Maksimovitch Y, Mikhnev V, Vainikainen P, et al. UWB Antenna Array Development for GPR Applications[C]//6th International Conference on Antenna Theory and Techniques.[S. l.]:IEEE, 2007:348-350.
[23] Daniels D J, Brooks D, Dittmer J, et al. Wide Swathe Multi-Channel GPR Systems for Mine Detection[C]//RADAR 2002.[S. l.]:IET, 2002:210-216.
[24] Yarovoy A, Savelyev T, Zhuge X, et al. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection[C]//Proceedings of the 5th European Radar Conference.[S. l.]:IEEE, 2008:288-291.
[25] Takeuchi T, Uematsu Y, Saito H, et al. Measure-ment of Survivor Location for Rescue Radar System by Using Two Dimensional Array Antenna[C]//2008 IEEE International Workshop on Safety, Security and Rescue Robotics.[S. l.]:IEEE, 2008:1-6.
[1] 刘霞, 黄阳, 黄敬, 段志伟. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1): 262-269.
[2] 马建全, 王念秦, 张新社. 基于点稳定系数法的斜坡稳定性分析[J]. 吉林大学学报(地球科学版), 2015, 45(2): 533-540.
[3] 刘财, 崔芳姿, 刘洋, 王典, 刘殿秘, 张鹏. 基于低信噪比条件下新型Seislet变换的阈值去噪方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 293-301.
[4] 贾海青, 姜弢, 徐学纯, 葛利华, 林君, 杨志超. 可控震源记录中的脉冲噪声分析[J]. 吉林大学学报(地球科学版), 2015, 45(1): 302-311.
[5] 周洪福,王春山,聂德新. 断层带岩体变形模量对坝基稳定性影响[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1254-1259.
[6] 王科,王常明,王彬, 姚康,王天佐. 基于MorgensternPrice法和强度折减法的边坡稳定性对比分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 902-907.
[7] 支墨墨,尚岳全,徐兴华. 碎石土滑坡稳定性一元多重属性回归模型分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 883-890.
[8] 言志信,马国哲,龙哲,段建,任志华,彭宁波,刘子振. 青藏高原东北缘推覆体构造稳定性定量化评价--以龙门山推覆体为例[J]. 吉林大学学报(地球科学版), 2013, 43(2): 484-493.
[9] 沈世伟, 佴磊, 徐燕. 不同权重条件下降雨对边坡稳定性影响的二级模糊综合评判[J]. J4, 2012, 42(3): 777-784.
[10] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[11] 张兰英, 张学庆, 任何军, 代焕芳, 李燕, 朱颜. 微生物浸矿驱提页岩油的技术进展[J]. J4, 2011, 41(5): 1562-1572.
[12] 齐干, 杨国兴, 李兵. 西藏古格王国遗址洞窟变形破坏模式、机制及加固对策[J]. J4, 2011, 41(5): 1494-1503.
[13] 安玉科, 佴磊. 关键块体系统锚固法在加固边坡危岩中的应用[J]. J4, 2011, 41(3): 764-770.
[14] 宋志伟, 程晓霞, 乔艳云, 潘宇, 罗克洁. 接种污泥对好氧颗粒污泥稳定性的影响[J]. J4, 2011, 41(3): 873-878.
[15] 徐兴华, 尚岳全, 王迎超. 碎石土滑坡综合治理及评价决策方法[J]. J4, 2011, 41(2): 484-492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!