吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 552-560.doi: 10.13278/j.cnki.jjuese.20200145

• 地球探测与信息技术 • 上一篇    

基于欧拉反褶积法的无人机航磁找矿应用

乔中坤1, 马国庆1, 于平1, 周文纳2, 张志厚3, 焦健1, 周帅1, 孟兆海4, 唐水亮5   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 兰州大学地质科学与矿产资源学院, 兰州 730000;
    3. 西南交通大学地球科学与环境工程学院, 成都 611756;
    4. 天津航海仪器研究所, 天津 300131;
    5. 浙江大年科技有限公司, 浙江 宁波 315400
  • 收稿日期:2020-06-18 发布日期:2021-04-06
  • 通讯作者: 马国庆(1984-),男,教授,主要从事位场数据处理及解释方面的研究,E-mail:maguoqing@jlu.edu.cn E-mail:maguoqing@jlu.edu.cn
  • 作者简介:乔中坤(1988-),男,博士研究生,主要从事航空重磁数据处理方面的研究,E-mail:qiaozhongkun007@163.com
  • 基金资助:
    “十三五”国家重点研发计划项目(2017YFC0602203);吉林省自然科学基金项目(20200201211JC);近地面探测技术重点实验室基金(6142414200815)

Application of UAV Aeromagnetic Prospecting Based on Euler Deconvolution

Qiao Zhongkun1, Ma Guoqing1, Yu Ping1, Zhou Wenna2, Zhang Zhihou3, Jiao Jian1, Zhou Shuai1, Meng Zhaohai4, Tang Shuiliang5   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. College of Geological Science and Mineral Resources, Lanzhou University, Lanzhou 730000, China;
    3. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;
    4. Tianjin Navigation Instrument Research Institute, Tianjin 300131, China;
    5. Zhejiang Danian Technology Co., Ltd, Ningbo 315400, Zhejiang, China
  • Received:2020-06-18 Published:2021-04-06
  • Supported by:
    Supported by the China National Key R&D Program During the 13th Five-Year Plan Period (2017YFC0602203), the Natural Science Foundation of Jilin Province (20200201211JC) and the Foundation for Key Laboratory of Near-Ground Detection Technology (6142414200815)

摘要: 无人机航磁测量以其高效、安全、低成本等优点逐渐应用到中小面积大比例尺资源勘探领域。本文针对安徽芜湖市三山区22 km2区域构造刻画和找矿前景预测,开展1∶20 000高精度无人机航磁测量工作;推导了欧拉反演求解过程,并分析对比构造指数选取,使用构造指数为0的欧拉反褶积对航磁数据进行反演求解,获得地下磁异常体构造边界解集信息;将其应用到研究区域航磁数据反演,根据反演得到的边界位置和深度信息圈定了18处断裂,并结合异常特征给出了8.7 km2岩浆岩分布区,根据宁芜区域铁矿成矿特点,圈定岩浆分布区及边界为成矿详查区。

关键词: 无人机航磁测量, 欧拉反褶积法, 构造解释

Abstract: Unmanned aerial vehicle (UAV) aeromagnetic survey is gradually applied to the field of small and medium-sized large-scale resource exploration due to its advantages of high efficiency, safety, and low cost. This study aims at the structure description and prospect prediction of the 22 km2 area in Sanshan district, Wuhu City, Anhui Province. For this purpose,the 1:20 000 high-precision UAV aeromagnetic survey was carrued out. The authors deduced the process of Euler inversion, analyzed and compared the selections of the tectonic index, used Euler deconvolution with the tectonic index 0 to solve the aeromagnetic data inversion, and finally obtained the structural boundary solution set information of the underground magnetic anomaly body. This was applied to the inversion of aeromagnetic data in the study area. According to the boundary position and depth information obtained from the inversion, 18 faults are recognized and combined. A magma distribution area of 8.7 km2 is delineated based on the anomalous characteristics. According to the metallogenic characteristics of an iron ore in Ningwu area, the magmatic distribution area and its boundary are determined as a detailed metallogenic survey area.

Key words: UAV aeromagnetic measurement, Euler deconvolution method, tectonic interpretation

中图分类号: 

  • P631.2
[1] 熊盛青. 我国航空重磁勘探技术现状与发展趋势[J].地球物理学进展, 2009, 24(1):113-117. Xiong Shengqing. The Present Situation and Development of Airborne Gravity and Magnetic Survey Techniques in China[J]. Progress in Geophysics, 2009, 24(1):113-117.
[2] van Groenestijn G J A, Verschuur D J. Estimating Primaries by Sparse Inversion and Application to Near-Offset Data Reconstruction[J]. Geophysics, 2009, 74(3):A23-A28.
[3] 史辉, 刘天佑, Dawi M G, 等. 利用欧拉反褶积法估计二度磁性体深度与位置[J].物探与化探,2005, 29(3):230-233. Shi Hui, Liu Tianyou, Dawi M G, et al. The Application of Euler Deconvolution to Estimating Depth and Location of the 2D Magnetic Body[J]. Geophysical & Geochemical Exploration, 2005, 29(3):230-233.
[4] Peters L J. The Direct Approach to Magnetic Interpretation and Its Practical Application[J]. Geophysics, 1949, 14(3):290-320.
[5] Reid A B, Allsop J M, Granser H, et al. Magnetic Interpretation in Three Dimensions Using Euler Deconvolution[J]. Geophysics, 1990, 55(1):80-91.
[6] Thompson D T. A New Technique for Making Computer-Assisted Depth Estimates from Magnetic Data[J]. Geophysics, 1982, 47(1):31-37.
[7] 周文月, 马国庆, 侯振隆, 等. 重力全张量数据联合欧拉反褶积法研究及应用[J].地球物理学报2017, 60(12):4855-4865. Zhou Wenyue, Ma Guoqing, Hou Zhenlong, et al. The Study on the Joint Euler Deconvolution Method of Full Tensor Gravity Data[J]. Chinese Journal of Geophysics, 2017, 60(12):4855-4865.
[8] 张季生, 高瑞, 李秋生, 等. 欧拉反褶积与解析信号相结合的位场反演方法[J].地球物理学报, 2011, 54(6):1634-1641. Zhang Jisheng, Gao Rui, Li Qiusheng,et al. A Combined Euler and Analytic Signal Method for an Inversion Calculation of Potential Data[J]. Chinese Journal of Geophysics, 2011, 54(6):1634-1641.
[9] 林刚, 朱纯六, 许德如. 宁芜南部成矿模式及对深部找矿的思考[J].大地构造与成矿学,2010,34(3):368-377. Lin Gang, Zhu Chunliu, Xu Deru. Discussion on Metallogenetic Model of the Southern Ningwu Porphyrite Iron Deposit and Deep Prosprcting Method[J]. Geotectonica et Metallogenia, 2010, 34(3):368-377.
[10] 吕庆田, 侯增谦. 我国东部深部找矿方向、找矿思路与勘查技术:以长江中下游成矿带为实例[C]//中国地球物理学会第二十三届年会论文集. 青岛:中国地球物理学会,2007:12-19. Lü Qingtian, Hou Zengqian. The Direction, Strategies and Approaches for Deep Mineral Exploration of East China:An Example from the Middle and Lower Changjiang Metallegenic Belt[C]//Proceedings of the 23rd Annual Meeting of the Chinese Geophysical Society. Qingdao:Chinese Geophysical Society, 2007:12-19.
[11] 毛景文, 邵拥军, 谢桂青, 等. 长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质,2009, 28(2):109-119. Mao Jingwen, Shao Yongjun, Xie Guiqing, et al. Mineral Deposit Model for Porphyry-Skarn Polymetallic Copper Deposits in Tongling Ore Dense District of Middle-Lower Yangtze Valley Metallognic Belt[J]. Mineral Deposits, 2009, 28(2):109-119.
[12] 孙昂, 郭华, 田明阳, 等. 基于欧拉反褶积方法的航磁三分量应用研究[J]. 地球物理学报,2017, 60(11):4491-4505. Sun Ang, Guo Hua, Tian Mingyang, et al. Application of Aeromagnetic Three-Component Survey Baseded on the Euler Geconvolution Method[J]. Chinese Journal of Geophysics, 2017, 60(11):4491-4505.
[13] 唐科远. 宁芜地区"玢岩铁矿"铁矿分布规律及地球物理找矿标志[J]. 低碳世界, 2014,9(18):174-175. Tang Keyuan. Distribution of Porphyrite Iron Ore in Ningwu Area and Its Geophysical Prospecting Criteria[J]. Low Carbon World, 2014, 9(18):174-175.
[14] 乔中坤, 马国庆, 周文纳, 等. 多旋翼无人机航磁系统误差综合补偿研究[J]. 地球物理学报, 2020, 63(12):4604-4612. Qiao Zhongkun, Ma Guoqing, Zhou Wenna, et al. Research on the Comprehensive Compensation of Aeromagnetic System Error of Multi-Rotor UAV[J]. Chinese Journal of Geophysics, 2020, 63(12):4604-4612.
[15] 李志鹏, 高嵩, 王绪本. 特殊区域旋翼无人机航磁测量研究[J].地球物理学报, 2018, 61(9):3825-3834. Li Zhipeng, Gao Song, Wang Xuben. New Method of Aeromagnetic Surveys with Rotorcraft UAV in Particular Areas[J]. Chinese Journal of Geophysics, 2018, 61(9):3825-3834.
[16] Reid A B, Thurston J B. The Structural Index in Gravity and Magnetic Interpretation:Errors, Uses, and Abuses[J]. Geophysics, 2014, 79(4):J61-J66.
[17] 樊文鑫, 李光明, 焦彦杰, 等. 重磁场特征对西藏扎西康矿集区构造格架与成矿的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6) 1741-1754. Fan Wenxin, Li Guangming, Jiao Yanjie, et al. Enlightenment of the Characteristics of Gravity and Magnetic Field on the Tectonic Framework and Metallogenesis of the Zhaxikang Ore-Concentrating Area, Tibet[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6) 1741-1754.
[18] 刘定进, 张永升, 段心标, 等. 三维数据域最小二乘逆时偏移技术研究[J]. 石油物探, 2019, 58(6):890-897. Liu Dingjin, Zhang Yongsheng, Duan Xinbiao, et al. Three-Dimensional Data Domain Least-Squares Reverse Time Migration[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):890-897.
[19] 鲁宝亮, 范美宁, 张原庆. 欧拉反褶积中构造指数的计算与优化选取[J].地球物理学进展,2009, 24(3):1027-1031. Lu Baoliang, Fan Meining, Zhang Yuanqing. The Calculation and Optimization of Structure Index in Euler Deconvolution[J]. Progress in Geophys, 2009, 24(3):1027-1031.
[20] 毛建仁, 苏郁香, 陈三元, 等. 长江中下游酸性侵入岩与成矿[M].北京:地质出版社,1990:1-191. Mao Jianren, Su Yuxiang, Chen Sanyuan, et al. Acid Intrusive Rocks and Mineralization in the Middle and Lower Reaches of the Yangtze River[M]. Beijing:Geological Publishing House, 1990:1-191.
[21] 于晓飞, 吕志成, 孙海瑞, 等. 全国整装勘查区成矿系统研究与矿产勘查新进展[J].吉林大学学报(地球科学版), 2020, 50(5):1261-1288. Yu Xiaofei, Lü Zhicheng, Sun Hairui, et al. Metallogenic System of Integrated Exploration Area and New Exploration Progress[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(5) 1261-1288.
[1] 赵肖, 郑孝诚, 焦健, 于平, 董向欣. 基于磁通门估计的航磁补偿快速处理方法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 857-864.
[2] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[3] 朱晓颖, 杨海, 匡星涛, 彭巍巍, 张洪瑞. 新疆东昆仑-阿尔金地区航磁反映的断裂构造特征[J]. 吉林大学学报(地球科学版), 2018, 48(2): 461-473.
[4] 舒晴, 朱晓颖, 高维, 李瑞, 尹航. 三塘湖盆地航磁异常特征及油气远景预测[J]. 吉林大学学报(地球科学版), 2018, 48(2): 451-460.
[5] 李建平, 翁爱华, 李世文, 李大俊, 李斯睿, 杨悦, 唐裕, 张艳辉. 基于球坐标系下有限差分的地磁测深三维正演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 411-419.
[6] 李永涛, 郭高山, 顾延生, 韦林, 何思远. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1543-1551.
[7] 朱凯光, 李玥, 孟洋, 王凌群, 谢宾, 程宇奇. 最小噪声分离在航空电磁数据噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(3): 876-883.
[8] 张玉芬,李长安,周稠,康春国,熊德强,江华军. 长江中游高位砾石层的磁性特征与物源分析[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1669-1677.
[9] 曲昕馨,李桐林,王飞. 基于数字图像分割法的跨孔雷达走时层析成像[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1340-1347.
[10] 耿美霞,黄大年,杨庆节. 改进的TRUST方法在航磁数据线性特征增强中的应用[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1333-1339.
[11] 徐如刚,黎哲君,张玮晶,张毅,谈昕,王雷,袁洁浩,翟洪涛. EMM2010模型在中国大陆的精度评估及其适用性[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1018-1030.
[12] 于向前,赵义平,王明新,刘迪,王文婷,汪馨竹. 音频大地电磁法与核磁共振法结合划分含水层的试验[J]. 吉林大学学报(地球科学版), 2014, 44(1): 350-358.
[13] 冉利民, 刘四新, 李玉喜, 李健伟. 影响跨孔雷达层析成像效果的几个因素[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1672-1680.
[14] 周锡明,任收麦,张兴洲,陈超,李成立. 海拉尔盆地阿拉尔-罕达盖重磁电剖面深部结构特征及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1630-1638.
[15] 汤文武,柳建新,童孝忠. 电导率连续变化的线源FCSEM有限元正演模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1646-1654.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!