吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1284-1294.doi: 10.13278/j.cnki.jjuese.20200151

• 地球探测与信息技术 • 上一篇    

基于多源遥感影像的长春市城市建成区提取

王博帅, 蒲东川, 李婷婷, 牛雪峰   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2020-06-28 出版日期:2021-07-26 发布日期:2021-08-02
  • 通讯作者: 牛雪峰(1970-),男,教授,主要从事摄影测量与遥感数据处理领域的教学与科研工作,E-mail:niuxf@jlu.edu.cn E-mail:niuxf@jlu.edu.cn
  • 作者简介:王博帅(1997-),男,硕士研究生,主要从事遥感技术与应用研究,E-mail:wangbs19@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41472243);吉林大学研究生创新基金资助项目(101832020CX230)

Mapping of Urban Built-Up Area of Changchun City Based on Multi-Source Remote Sensing Images

Wang Boshuai, Pu Dongchuan, Li Tingting, Niu Xuefeng   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2020-06-28 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41472243) and the Graduate Innovation Fund of Jilin University (101832020CX230)

摘要: 夜光遥感影像记录的城市灯光与人类活动密切相关,已广泛应用于城市信息提取。珞珈一号作为新一代夜光遥感数据源,比以往的夜光数据具有更高的空间分辨率和光谱分辨率,可以更清晰地表达城市建成区范围和内部结构。本文利用珞珈一号夜光遥感影像,通过人类居住指数(human settlement index, HSI)、植被覆盖和建筑共同校正的城市夜光指数(vegetation and build adjusted nighttime light urban index, VBANUI)及支持向量机(support vector machine, SVM)监督分类3种方法对长春市城市建成区进行提取,并与利用NPP/VIIRS(suomi national polar-orbiting partnership/visible infrared imaging radiometer suite)夜光遥感影像、采用同样方法得到的结果对比。结果显示:本文提出的VBANUI提高了传统植被覆盖校正的城市夜光指数(vegetation adjusted nighttime light urban index, VANUI)的提取精度,使用珞珈一号夜光遥感影像通过VBANUI提取的城市建成区结果最优,其Kappa系数为0.80,总体分类精度为90.74%;使用珞珈一号和NPP/VIIRS夜光遥感影像通过HSI按最佳阈值提取城市建成区的Kappa系数分别为0.75和0.72,总体分类精度分别为88.27%和86.54%;复合数据的SVM监督分类法中Landsat-NDBI、Landsat-NDBI-VIIRS、Landsat-NDBI-LJ和Landsat-NDBI-LJlog的Kappa系数分别为0.602、0.627、0.643和0.681,总体分类精度分别为81.11%、81.52%、82.25%和84.48%。研究结果表明:3种提取方法下,均为使用珞珈一号夜光遥感影像的结果优于使用NPP/VIIRS夜光遥感影像的结果,证明相比于NPP/VIIRS夜光遥感影像,珞珈一号夜光遥感影像更适用于城市尺度的建成区范围提取。

关键词: 珞珈一号夜光遥感影像, NPP/VIIRS夜光遥感影像, 城市建成区, VBANUI, 人类居住指数, 支持向量机

Abstract: Nighttime remote sensing images have been widely used in the extraction of city information,as nighttime light data are closely related to human activities. As a new generation of noctilucent remote sensing data source, LJ1-01 has higher spatial and spectral resolutions, and can express the scope and internal structure of urban built-up areas more clearly. In this study, LJ1-01 nighttime light remote sensing images were used to extract the urban built-up area of Changchun City based on human settlement index (HSI),vegetation and build adjusted nighttime light urban index(VBANUI), and support vector machine(SVM) supervised classification. The results were compared with those obtained by suomi national polar orbiting partnership/visible infrared imaging radiometer suite (NPP/VIIRS) using the same method. It showed that the extraction accuracy of the traditional vegetation adjusted nighttime light urban index(VANUI) is improved by VBANUI proposed in this paper. Among them, the urban built-up area extracted by VBANUI using LJ1-01 has the best result, with the Kappa coefficient of 0.80 and the overall classification accuracy of 90.74%; The optimal Kappa coefficients of urban built-up areas extracted by HSI using LJ1-01 and NPP/VIIRS are 0.75 and 0.72, respectively, and the overall classification accuracy is 88.27% and 86.54%, respectively; The kappa coefficients of Landsat-NDBI composite data, Landsat-NDBI-VIIRS composite data, Landsat-NDBI-LJ composite data, and Landsat-NDBI-LJlog composite data in SVM supervised classification are 0.602, 0.627, 0.643, and 0.681, respectively, and their overall classification accuracy is 81.11%, 81.52%, 82.25%, and 84.48% respectively. The results show that the LJ1-01 nighttime image is the best among the three extraction methods. This study proves that the LJ1-01 night light remote sensing image is more suitable for urban level built-up area extraction than NPP/VIIRS night light remote sensing image.

Key words: LJ1-01 nighttime light remote sensing image, NPP/VIIRS nighttime light remote sensing image, urban built-up area, VBANUI, human settlement index, support vector machine

中图分类号: 

  • P237
[1] 肖金成,刘保奎.改革开放40年中国城镇化回顾与展望[J].宏观经济研究,2018(12):18-29. Xiao Jincheng, Liu Baokui. Review and Prospect of China's Urbanization in the Past 40 Years of Reform and Opening-Up[J]. Macroeconomic Research, 2018(12):18-29.
[2] 尹荣尧,孙翔.中国快速城市化的资源保障隐忧、生态困境与对策[J].现代经济探讨,2014(2):63-65,87. Yin Rongyao, Sun Xiang. Resource Security Concerns, Ecological Dilemma and Countermeasures for China's Rapid Urbanization[J]. Discussion on Modern Economy, 2014(2):63-65,87.
[3] Foley J A,Defries R, Asner G P, et al. Global Consequences of Land Use[J]. Science, 2005, 309:570-574.
[4] 李德仁,张过,沈欣,等.珞珈一号01星夜光遥感设计与处理[J].遥感学报,2019,23(6):1011-1022. Li Deren, Zhang Guo, Shen Xin, et al.Design and Processing of Luojia 101 Night-Light Remote Sensing[J]. Journal of Remote Sensing, 209, 23(6):1011-1022.
[5] Li D, Li X. An Overview on Data Mining of Nighttime Light Remote Sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44:591-601.
[6] Li X, Xu H, Chen X, et al. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China[J]. Remote Sensing, 2013, 5:3057-3081.
[7] Yu B, Shu S, Liu H, et al. Object-Based Spatial Cluster Analysis of Urban Landscape Pattern Using Nighttime Light Satellite Images:A Case Study of China[J]. Int J Geogr Inf Sci, 2014, 28:2328-2355.
[8] Li X, Zhou Y Y, Cao C Y. Remote Sensing of Night-Time Light[J]. Int J Remote Sensing, 2017, 38:5855-5859.
[9] Jing W, Yang Y, Yue X, et al. Mapping Urban Areas with Integration of DMSP/OLS Nighttime Light and MODIS Data Using Machine Learning Techniques[J]. Remote Sensing, 2015, 7:12419-12439.
[10] 何春阳,李景刚,陈晋,等.基于夜间灯光数据的环渤海地区城市化过程[J].地理学报,2005,2(3):409-417. He Chunyang, Li Jinggang, Chen Jin, et al. Urbanization Prosess of Bohai Rim Region Based on Night Light Data[J]. Journal of Geography, 2005, 2(3):409-417.
[11] Imoffm M, Lawerence W T, Stutzer D C. A Technique for Using Composite DMSP/OLS "City Light" Satellite Data to Map Urban Area[J]. Remote Sensing of Environment, 1997, 61(3):361-370.
[12] Zhou Y, Smith S, Elvidge C, et al. Cluster-Based Method to Map Urban Area from DMSP/OLS Nightlight[J]. Remote Sensing of Environment, 2014, 147:173-185.
[13] 陈佐旗. 基于多源夜间灯光遥感影像的多尺度城市空间形态结构分析[D].上海:华东师范大学,2017. Chen Zuoqi. Spatial Morphological Structure Analysis of Multi-Scale Cities Based on Remote Sensing Image of Multi-Source Night Lights[D]. Shanghai:East China Normal University, 2017.
[14] 王博. 基于NPP-VIIRS夜间灯光遥感影像的杭州城市结构发展变化分析[D].杭州:浙江大学,2019. Wang Bo. Analysis of Urban Structure Development and Change in Hangzhou Based on NPP-VIIRS Night Light Remote Sensing Image[D]. Hangzhou:Zhejiang University, 2019.
[15] 刘沁萍,杨永春,付冬暇,等.基于DMSP_OLS灯光数据的1992~2010年中国城市空间扩张研究[J].地理科学,2014,34(2):129-136. Liu Qinping, Yang Yongchun, Fu Dongxia, et al. Urban Spatial Expansion in China from 1992 to 2010 Based on DMSP_OLS Light Data[J]. Geoscience, 2014, 34(2):129-136.
[16] 长春市统计局. 2018年长春市国民经济和社会发展统计公报[N]. 长春日报,2019-05-30(6). Changchun Municipal Bureau of Statistics. 2018 Statistical Bulletin on Changchun's National Economic and Social Development[N]. Changchun Daily, 2019-05-30(6).
[17] 徐涵秋,唐菲.新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11):3249-3257. Xu Hanqiu, Tang Fei. New Generation of Landsat Series Satellites:New Features of Landsat 8 Remote Sensing Image and Its Ecological Environment Significance[J]. Journal of Ecology, 2013, 33(11):3249-3257.
[18] Lu D S, Tian H Q, Zhou G M, et al. Regional Mapping of Human Settlements in Southeastern China with Multisensor Remotely Sensed Data[J]. Remote Sensing of Environment, 2008, 112:3668-3679.
[19] 唐敏. 基于对数变换的NPP-VIIRS夜间灯光遥感影像在城市建成区提取中的应用[D].上海:华东师范大学,2017. Tang Min. Application of NPP-VIIRS Night Light Remote Sensing Image Based on Logarithmic Transformation in Urban Built-Up Area Extraction[D]. Shanghai:East China Normal University, 2017.
[20] Zhang Q, Schaaf C, Seto K C. The Vegetation Adjusted NTL Urban Index:A New Approach to Reduce Saturation and Increase Variation in Nighttime Luminosity[J]. Remote Sensing of Environment, 2013, 129:32-41.
[21] 李二珠. 半监督支持向量机高光谱遥感影像分类[D].徐州:中国矿业大学,2014. Li Erzhu. Semi-Supervised Hyperspectral Remote Sensing Image Classification by Support Vector Machines[D]. Xuzhou:China University of Mining and Technology, 2014.
[22] 王明常,朱春宇,陈学业,等.基于FPN Res-Unet的高分辨率遥感影像建筑物变化检测[J].吉林大学学报(地球科学版),2021,51(1):296-306. Wang Mingchang, Zhu Chunyu, Chen Xueye, et al. Building Change Detection High Resolution Remote Sensing Images Based on FPN Res-Unet[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1):296-306.
[23] Li Xi, Zhao Lixian, Li Deren. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery[J]. Sensors, 2018, 18(11). doi.org/10.3390/s18113665.
[24] 张华. 遥感数据可靠性分类方法研究[D].徐州:中国矿业大学,2012. Zhang Hua. Research on Reliability Classification Method of Remote Sensing Data[D]. Xuzhou:China University of Mining and Technology, 2012.
[1] 牟丹, 张丽春, 徐长玲. 3种经典机器学习算法在火山岩测井岩性识别中的对比[J]. 吉林大学学报(地球科学版), 2021, 51(3): 951-956.
[2] 刘云鹏, 郭春影, 秦明宽, 吴玉, 裴柳宁. 基于PCA-SVM算法对稀土元素与稀土判别指标耦合数据集的铀矿床分类[J]. 吉林大学学报(地球科学版), 2021, 51(3): 723-733.
[3] 尹超, 周爱红, 袁颖, 王帅伟. 基于邻域粗糙集和支持向量机的固结系数预测[J]. 吉林大学学报(地球科学版), 2019, 49(3): 746-754.
[4] 韩启迪, 张小桐, 申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 611-620.
[5] 徐守余, 路研, 王亚. 基于支持向量机的浊积扇低渗透储层流动单元研究[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1330-1341.
[6] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378.
[7] 卢文喜, 郭家园, 董海彪, 张宇, 林琳. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1511-1519.
[8] 王常明, 田书文, 王翊虹, 阮云凯, 丁桂伶. 泥石流危险性评价:模糊c均值聚类-支持向量机法[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1168-1175.
[9] 杨雪峰, 王雪梅, 毛东雷. 塔里木河下游土地利用覆被MISR多角度遥感制图[J]. 吉林大学学报(地球科学版), 2016, 46(2): 617-626.
[10] 秦喜文, 刘媛媛, 王新民, 董小刚, 张瑜, 周红梅. 基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J]. 吉林大学学报(地球科学版), 2016, 46(2): 563-568.
[11] 牟丹, 王祝文, 黄玉龙, 许石, 周大鹏. 基于最小二乘支持向量机测井识别火山岩类型:以辽河盆地中基性火山岩为例[J]. 吉林大学学报(地球科学版), 2015, 45(2): 639-648.
[12] 杨佳佳, 姜琦刚, 赵静, 徐言, 孟翔冲. 基于改进的SVM技术和高光谱遥感的标准矿物定量计算[J]. J4, 2012, 42(3): 864-871.
[13] 牛瑞卿, 彭令, 叶润青, 武雪玲. 基于粗糙集的支持向量机滑坡易发性评价[J]. J4, 2012, 42(2): 430-439.
[14] 许长福, 李雄炎, 谭锋奇, 于红岩, 李洪奇. 任务驱动数据挖掘方法的提出及在低阻油层识别中的应用[J]. J4, 2012, 42(1): 39-46.
[15] 王利花, 周云轩, 田波. 基于TM和ETM+影像数据的东沙环礁珊瑚礁监测[J]. J4, 2011, 41(5): 1630-1637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .