吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1897-1907.doi: 10.13278/j.cnki.jjuese.20200186
周恒1, 张春雷2, 张欣3, 陈庆轩4, 张艳5, 仲诚诚1
Zhou Heng1, Zhang Chunlei2, Zhang Xin3, Chen Qingxuan4, Zhang Yan5, Zhong Chengcheng1
摘要: 针对岩石颗粒边缘模糊、结构复杂的特点,为了更有效地识别颗粒边缘,在基于特征值的C3相干算法的基础上,融合多尺度和多角度的特征表达,提出了一种改进的C3相干算法。该算法综合考虑岩石薄片图像角度域光学特征、空间尺度信息和各向异性信息,能更有效地表征颗粒边缘特征,表现出对复杂矿物结构的适应能力。在采集的岩石薄片正交偏光图像上验证提出的算法,实验结果表明,与原生C3相干算法相比,改进后的C3相干算法在全局图像上的方差和灰度差分乘积分别提升了68.41%和22.91%,信息熵下降了21.61%。
中图分类号:
[1] 林培英.晶体光学与造岩矿物[M].北京:地质出版社,2005:46. Lin Peiying. Crystal Optics and Rock-Forming Minerals[M]. Beijing:Geological Publishing House, 2005:46. [2] Teng J, Deng H, Liu B, et al. Insights of the Pore System of Lacustrine Shales from Immature to Late Mature with the Aid of Petrology, Mineralogy and Porosimetry:A Case Study of the Triassic Yanchang Formation of the Ordos Basin, North China[J]. Journal of Petroleum Science and Engineering, 2021, 196:107631. [3] Lai J, Wang G, Fan Z, et al. Insight into the Pore Structure of Tight Sandstones Using NMR and HPMI Measurements[J]. Energy & Fuels, 2016, 30(12):10200-10214. [4] 张欣,张栋,杨倬,等.基于正交偏光序列消光特征的岩石薄片颗粒分割与孔隙提取[J].岩石矿物学杂志,2020,39(1):120-128. Zhang Xin, Zhang Dong, Yang Zhuo, et al. Grain Segmentation and Pore Identification of Multi-Angle Cross-Polarized Microscopic Images[J]. Acta Petrologica et Mineralogica, 2020, 39(1):120-128. [5] 胡小晴,高世臣,张欣,等.基于连续消光特征分析的岩石薄片分析系统[J/OL].地学前缘,[2020-07-25].https://doi.org/10.13745/j.esf.sf.2020.6.36. Hu Xiaoqing, Gao Shichen, Zhang Xin, et al. The Rock Thin Section Analysis System Based on Continuous Extinction Characteristics[J/OL]. Earth Science Frontiers,[2020-07-25]. https://doi.org/10.13745/j.esf.sf.2020.6.36. [6] 张艳,张春雷,阎娜,等.基于贝叶斯分类的图像分析方法在孔隙结构参数表征中的应用:以姬塬油田长9油层组为例[J].油气地质与采收率,2018,25(3):61-67. Zhang Yan, Zhang Chunlei, Yan Na, et al. Application of Image Analysis Based on Bayesian Classification in Characterization of Pore Structure Parameters:A Case Study of Chang9 Oil Layer in Jiyuan Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3):61-67. [7] Liu C, Liu H Y, Peng C, et al. Application of the Ant Colony Algorithm Based on Weighted Coherence to Fault Detection[J]. Chinese Journal of Geophysics, 2016, 59(10):3859-3868. [8] Yang T, Zhang B, Gao J. A Fast Algorithm for Coherency Estimation in Seismic Data Based on Information Divergence[J]. Journal of Applied Geophysics, 2015, 115:140-144. [9] 甄宗玉,郑江峰,孙佳林,等.基于最大似然属性的断层识别方法及应用[J].地球物理学进展,2020,35(1):374-378. Zhen Zongyu, Zheng Jiangfeng, Sun Jialin, et al. Fault Identification Method Based on the Maximum Likelihood Attribute and Its Application[J]. Progress in Geophysics, 2020, 35(1):374-378. [10] 李婷婷,侯思宇,马世忠,等.断层识别方法综述及研究进展[J].地球物理学进展,2018,33(4):1507-1514. Li Tingting, Hou Siyu, Ma Shizhong, et al. Overview and Research Progress of Fault Identification Method[J]. Progress in Geophysics, 2018, 33(4):1507-1514. [11] Lin T, Ha T, Marfurt K J, et al.Quantifying the Significance of Coherence Anomalies[J]. Interpretation, 2016, 4(2):T205-T213. [12] Zvietcovich F, Rolland J P, Yao J, et al. Comparative Study of Shear Wave-Based Elastography Techniques in Optical Coherence Tomography[J]. Journal of Biomedical Optics, 2017, 22(3):35010. [13] 张全,林柏栎,彭博,等.基于CUDA的地震相干体并行算法[J].地质与勘探,2020,56(1):147-153. Zhang Quan, Lin Baili, Peng Bo, et al. Seismic Coherence Parallel Algorithm Based on CUDA[J]. Geology and Exploration, 2020, 56(1):147-153. [14] Chopra S, Marfurt K J. Coherence Attribute Applications on Seismic Data in Various Guises:Part 1[J]. Interpretation, 2018, 6(3):T521-T529. [15] Wu X. Directional Structure-Tensor-Based Coherence to Detect Seismic Faults and Channels[J]. Geophysics, 2017, 82(2):A13-A17. [16] 纪彤洲,杨迎军,李尚林.相干体技术在河道预测中的应用[J].石油物探,2003,42(3):399-401. Ji Tongzhou, Yang Yingjun, Li Shanglin. Application of Coherence Technology in the Prediction of Channel Sand[J]. Geophysical Prospecting for Petroleum, 2003, 42(3):399-401. [17] 冯智慧,张文春,李向群,等.高精度分频相干加强技术在微小断层识别中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5):1571-1579. Feng Zhihui, Zhang Wenchun, Li Xiangqun, et al.Application of High-Precision Frequency Division Coherency Enhancement Technique in Micro-Fault Identification[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1571-1579. [18] Wu X, Luo S, Hale D. Moving Faults While Unfaulting 3D Seismic Images[J]. Geophysics, 2016, 81(2):IM25-IM33. [19] Dou X Y, Han L G, Wang E L, et al. A Fracture Enhancement Method Based on the Histogram Equalization of Eigenstructure-Dased Coherence[J]. Applied Geophysics, 2014, 11(2):179-185. [20] Lu W, Zhang S, Xiao H. Image Enhancement of Coherence Cube Based on Coherent Filtering[J]. Natural Gas Industry, 2006, 26(5):37-39. [21] 席桂梅,何书耕,闵也,等.用相干体属性开展断层识别[J].西北地质,2019,52(1):244-249. Xi Guimei, He Shugeng, Min Ye, et al. Fault Identification by the Coherency Attributes[J]. Northwest Geology, 2019, 52(1):244-249. [22] 杨涛涛,王彬,吕福亮,等.相干技术在油气勘探中的应用[J].地球物理学进展,2013,28(3):1531-1540. Yang Taotao, Wang Bin, Lü Fuliang, et al. The Application of Seismic Coherence Technology for Petroleum Exploration[J]. Progress in Geophysics, 2013, 28(3):1531-1540. [23] 杨葆军,杨长春,陈雨红,等.自适应时窗相干体计算技术及其应用[J].石油地球物理勘探,2013,48(3):436-442. Yang Baojun, Yang Changchun, Chen Yuhong, et al. Coherence Calculation with Adaptive Windows and Its Application[J]. Oil Geophysical Prospecting, 2013, 48(3):436-442. [24] 彭仕宓,索重辉,王晓杰,等.整合多尺度信息的裂缝性储层建模方法探讨[J].西安石油大学学报(自然科学版),2011,26(4):1-8. Peng Shimi, Suo Chonghui, Wang Xiaojie, et al. A Modeling Method for Fractured Reservoirs Using Multi-Scale Information[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2011, 26(4):1-8. [25] 马瑾环,陈国俊,吴志高,等.改进的第三代相干算法及应用[J].勘探地球物理进展,2007(4):286-291. Ma Jinhuan, Chen Guojun, Wu Zhigao, et al. Modified Coherency Cube of the Third Generation and Its Applications[J]. Progress in Exploration Geophysics, 2007(4):286-291. [26] 彭志伟,滕奇志,何小海,等.基于岩石薄片偏光序列图的颗粒分割算法[J].计算机应用与软件,2018,35(5):236-241. Peng Zhiwei, Teng Qizhi, He Xiaohai, et al. Particle Segmentation Algorithm Based on Polarized Light Sequence Images of Petrographic Thin Section[J]. Computer Applications and Software, 2018, 35(5):236-241. [27] 赵启明,王睿,滕奇志,等.基于岩石薄片偏光序列图的颗粒成分分析[J].太赫兹科学与电子信息学报,2015,13(2):285-290. Zhao Qiming, Wang Rui, Teng Qizhi, et al. Particle Composition Analysis Based on Rock Slice Orthogonal Polarization Sequence Diagram[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(2):285-290. [28] 吴拥,苏桂芬,滕奇志,等.岩石薄片正交偏光图像的颗粒分割方法[J].科学技术与工程,2013,13(31):9201-9206. Wu Yong, Su Guifen, Teng Qizhi, et al. A Particles Segmentation Method of Rock Slice Orthogonal Polarization Images[J]. Science Technology and Engineering, 2013, 13(31):9201-9206. [29] 冯俊岭,包志民,吕长禄,等.岩石薄片显微图像采集技术及应用[J].中国矿业,2014,23(14):168-172. Feng Junling, Bao Zhimin, Lü Changlu, et al. Rock Microsection Images Capturing Technologies and Application[J]. China Mining Magazine, 2014, 23(14):168-172. [30] 王德滋,谢磊. 光性矿物学[M]. 3版. 北京:科学出版社,2008:97. Wang Dezi, Xie Lei. Light Mineralogy[M]. 3rd ed. Beijing:Science Press, 2008:97. [31] Li F, Lu W. Coherence Attribute at Different Spectral Scales[J]. Interpretation, 2014, 2(1):SA99-SA106. [32] 王静,张军华,王延光,等.特征值相干理论诠释及效果比较[J].地球物理学进展,2019, 34(5):1917-1923. Wang Jing, Zhang Junhua, Wang Yanguang, et al. Annotation and Effect Comparison of Eigenvalue Coherence[J]. Progress in Geophysics, 2019, 34(5):1917-1923. [33] 李郁峰,陈念年,张佳成.一种快速高灵敏度聚焦评价函数[J].计算机应用研究,2010,27(4):1534-1536. Li Yufeng, Chen Niannian, Zhang Jiacheng.Fast and High Sensitivity Focusing Evaluation Function[J]. Application Research of Computers, 2010, 27(4):1534-1536. |
[1] | 李慧盈, 李文辉, 陈圣波. 一种机载雷达点云数据的快速分类方法[J]. J4, 2010, 40(5): 1205-1210. |
|