吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1897-1907.doi: 10.13278/j.cnki.jjuese.20200186

• 地球探测与信息技术 • 上一篇    下一篇

基于相干特征的岩石薄片序列图像边缘提取及颗粒分割

周恒1, 张春雷2, 张欣3, 陈庆轩4, 张艳5, 仲诚诚1   

  1. 1. 中国地质大学(北京)数理学院, 北京 100083;
    2. 北京中地润德石油科技有限公司, 北京 100083;
    3. 北京师范大学统计学院, 北京 100875;
    4. 中国石油长庆油田第三采气厂, 西安 710016;
    5. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083
  • 收稿日期:2020-08-19 出版日期:2021-11-26 发布日期:2021-11-24
  • 通讯作者: 张春雷(1972-),教授级高工,博士,主要从事油气田表征、地质统计和机器学习等研究,E-mail:676935005@qq.com E-mail:676935005@qq.com
  • 作者简介:周恒(1995-),硕士研究生,主要从事深度学习、图像处理和数据挖掘等研究,E-mail:401186059@qq.com
  • 基金资助:
    国家科技重大专项(2016ZX05050)

Edge Extraction and Particle Segmentation Based on Coherent Features of Rock Slice Sequence Images

Zhou Heng1, Zhang Chunlei2, Zhang Xin3, Chen Qingxuan4, Zhang Yan5, Zhong Chengcheng1   

  1. 1. School of Science, China University of Geosciences(Beijing), Beijing 100083, China;
    2. Beijing Zhongdi Runde Petroleum Technology Co., Ltd., Beijing 100083, China;
    3. School of Statistics, Beijing Normal University, Beijing 100875, China;
    4. No.3 Gas Production Plant, PetroChina Changqing Oilfield Company, Xi'an 710016, China;
    5. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2020-08-19 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Science and Technology Major Projection (2016ZX05050)

摘要: 针对岩石颗粒边缘模糊、结构复杂的特点,为了更有效地识别颗粒边缘,在基于特征值的C3相干算法的基础上,融合多尺度和多角度的特征表达,提出了一种改进的C3相干算法。该算法综合考虑岩石薄片图像角度域光学特征、空间尺度信息和各向异性信息,能更有效地表征颗粒边缘特征,表现出对复杂矿物结构的适应能力。在采集的岩石薄片正交偏光图像上验证提出的算法,实验结果表明,与原生C3相干算法相比,改进后的C3相干算法在全局图像上的方差和灰度差分乘积分别提升了68.41%和22.91%,信息熵下降了21.61%。

关键词: 岩石薄片, 正交偏光序列图像, 改进的C3相干算法, 边缘提取, 相干特征融合

Abstract: Aiming at the characteristics of fuzzy edges and complex structures of rock particles, an improved C3 coherence algorithm is proposed to identify the edges of particles more effectively. The improved C3 coherence algorithm is based on eigenvalues, in which the multi-scale and multi-angle feature expressions are infused for improvement. It comprehensively considers the angle domain optical characteristics, spatial scale information, and anisotropy information of rock slice images so that the grain edges are characterized more effectively, which have strong noise resistance and adaptability to complex mineral structures. The proposed algorithm has been verified on the acquired orthogonal polarized images of rock slices. The experimental results show that compared with the native C3 coherence algorithm, the improved C3 coherent algorithm increases the variance and gray-scale difference product of the global image by 68.41% and 22.91%, and decreases the information entropy by 21.61%.

Key words: rock thin slices, orthogonal polarization sequence images, improved C3 coherence algorithm, edge extraction, coherent feature fusion

中图分类号: 

  • TP751
[1] 林培英.晶体光学与造岩矿物[M].北京:地质出版社,2005:46. Lin Peiying. Crystal Optics and Rock-Forming Minerals[M]. Beijing:Geological Publishing House, 2005:46.
[2] Teng J, Deng H, Liu B, et al. Insights of the Pore System of Lacustrine Shales from Immature to Late Mature with the Aid of Petrology, Mineralogy and Porosimetry:A Case Study of the Triassic Yanchang Formation of the Ordos Basin, North China[J]. Journal of Petroleum Science and Engineering, 2021, 196:107631.
[3] Lai J, Wang G, Fan Z, et al. Insight into the Pore Structure of Tight Sandstones Using NMR and HPMI Measurements[J]. Energy & Fuels, 2016, 30(12):10200-10214.
[4] 张欣,张栋,杨倬,等.基于正交偏光序列消光特征的岩石薄片颗粒分割与孔隙提取[J].岩石矿物学杂志,2020,39(1):120-128. Zhang Xin, Zhang Dong, Yang Zhuo, et al. Grain Segmentation and Pore Identification of Multi-Angle Cross-Polarized Microscopic Images[J]. Acta Petrologica et Mineralogica, 2020, 39(1):120-128.
[5] 胡小晴,高世臣,张欣,等.基于连续消光特征分析的岩石薄片分析系统[J/OL].地学前缘,[2020-07-25].https://doi.org/10.13745/j.esf.sf.2020.6.36. Hu Xiaoqing, Gao Shichen, Zhang Xin, et al. The Rock Thin Section Analysis System Based on Continuous Extinction Characteristics[J/OL]. Earth Science Frontiers,[2020-07-25]. https://doi.org/10.13745/j.esf.sf.2020.6.36.
[6] 张艳,张春雷,阎娜,等.基于贝叶斯分类的图像分析方法在孔隙结构参数表征中的应用:以姬塬油田长9油层组为例[J].油气地质与采收率,2018,25(3):61-67. Zhang Yan, Zhang Chunlei, Yan Na, et al. Application of Image Analysis Based on Bayesian Classification in Characterization of Pore Structure Parameters:A Case Study of Chang9 Oil Layer in Jiyuan Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3):61-67.
[7] Liu C, Liu H Y, Peng C, et al. Application of the Ant Colony Algorithm Based on Weighted Coherence to Fault Detection[J]. Chinese Journal of Geophysics, 2016, 59(10):3859-3868.
[8] Yang T, Zhang B, Gao J. A Fast Algorithm for Coherency Estimation in Seismic Data Based on Information Divergence[J]. Journal of Applied Geophysics, 2015, 115:140-144.
[9] 甄宗玉,郑江峰,孙佳林,等.基于最大似然属性的断层识别方法及应用[J].地球物理学进展,2020,35(1):374-378. Zhen Zongyu, Zheng Jiangfeng, Sun Jialin, et al. Fault Identification Method Based on the Maximum Likelihood Attribute and Its Application[J]. Progress in Geophysics, 2020, 35(1):374-378.
[10] 李婷婷,侯思宇,马世忠,等.断层识别方法综述及研究进展[J].地球物理学进展,2018,33(4):1507-1514. Li Tingting, Hou Siyu, Ma Shizhong, et al. Overview and Research Progress of Fault Identification Method[J]. Progress in Geophysics, 2018, 33(4):1507-1514.
[11] Lin T, Ha T, Marfurt K J, et al.Quantifying the Significance of Coherence Anomalies[J]. Interpretation, 2016, 4(2):T205-T213.
[12] Zvietcovich F, Rolland J P, Yao J, et al. Comparative Study of Shear Wave-Based Elastography Techniques in Optical Coherence Tomography[J]. Journal of Biomedical Optics, 2017, 22(3):35010.
[13] 张全,林柏栎,彭博,等.基于CUDA的地震相干体并行算法[J].地质与勘探,2020,56(1):147-153. Zhang Quan, Lin Baili, Peng Bo, et al. Seismic Coherence Parallel Algorithm Based on CUDA[J]. Geology and Exploration, 2020, 56(1):147-153.
[14] Chopra S, Marfurt K J. Coherence Attribute Applications on Seismic Data in Various Guises:Part 1[J]. Interpretation, 2018, 6(3):T521-T529.
[15] Wu X. Directional Structure-Tensor-Based Coherence to Detect Seismic Faults and Channels[J]. Geophysics, 2017, 82(2):A13-A17.
[16] 纪彤洲,杨迎军,李尚林.相干体技术在河道预测中的应用[J].石油物探,2003,42(3):399-401. Ji Tongzhou, Yang Yingjun, Li Shanglin. Application of Coherence Technology in the Prediction of Channel Sand[J]. Geophysical Prospecting for Petroleum, 2003, 42(3):399-401.
[17] 冯智慧,张文春,李向群,等.高精度分频相干加强技术在微小断层识别中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5):1571-1579. Feng Zhihui, Zhang Wenchun, Li Xiangqun, et al.Application of High-Precision Frequency Division Coherency Enhancement Technique in Micro-Fault Identification[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1571-1579.
[18] Wu X, Luo S, Hale D. Moving Faults While Unfaulting 3D Seismic Images[J]. Geophysics, 2016, 81(2):IM25-IM33.
[19] Dou X Y, Han L G, Wang E L, et al. A Fracture Enhancement Method Based on the Histogram Equalization of Eigenstructure-Dased Coherence[J]. Applied Geophysics, 2014, 11(2):179-185.
[20] Lu W, Zhang S, Xiao H. Image Enhancement of Coherence Cube Based on Coherent Filtering[J]. Natural Gas Industry, 2006, 26(5):37-39.
[21] 席桂梅,何书耕,闵也,等.用相干体属性开展断层识别[J].西北地质,2019,52(1):244-249. Xi Guimei, He Shugeng, Min Ye, et al. Fault Identification by the Coherency Attributes[J]. Northwest Geology, 2019, 52(1):244-249.
[22] 杨涛涛,王彬,吕福亮,等.相干技术在油气勘探中的应用[J].地球物理学进展,2013,28(3):1531-1540. Yang Taotao, Wang Bin, Lü Fuliang, et al. The Application of Seismic Coherence Technology for Petroleum Exploration[J]. Progress in Geophysics, 2013, 28(3):1531-1540.
[23] 杨葆军,杨长春,陈雨红,等.自适应时窗相干体计算技术及其应用[J].石油地球物理勘探,2013,48(3):436-442. Yang Baojun, Yang Changchun, Chen Yuhong, et al. Coherence Calculation with Adaptive Windows and Its Application[J]. Oil Geophysical Prospecting, 2013, 48(3):436-442.
[24] 彭仕宓,索重辉,王晓杰,等.整合多尺度信息的裂缝性储层建模方法探讨[J].西安石油大学学报(自然科学版),2011,26(4):1-8. Peng Shimi, Suo Chonghui, Wang Xiaojie, et al. A Modeling Method for Fractured Reservoirs Using Multi-Scale Information[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2011, 26(4):1-8.
[25] 马瑾环,陈国俊,吴志高,等.改进的第三代相干算法及应用[J].勘探地球物理进展,2007(4):286-291. Ma Jinhuan, Chen Guojun, Wu Zhigao, et al. Modified Coherency Cube of the Third Generation and Its Applications[J]. Progress in Exploration Geophysics, 2007(4):286-291.
[26] 彭志伟,滕奇志,何小海,等.基于岩石薄片偏光序列图的颗粒分割算法[J].计算机应用与软件,2018,35(5):236-241. Peng Zhiwei, Teng Qizhi, He Xiaohai, et al. Particle Segmentation Algorithm Based on Polarized Light Sequence Images of Petrographic Thin Section[J]. Computer Applications and Software, 2018, 35(5):236-241.
[27] 赵启明,王睿,滕奇志,等.基于岩石薄片偏光序列图的颗粒成分分析[J].太赫兹科学与电子信息学报,2015,13(2):285-290. Zhao Qiming, Wang Rui, Teng Qizhi, et al. Particle Composition Analysis Based on Rock Slice Orthogonal Polarization Sequence Diagram[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(2):285-290.
[28] 吴拥,苏桂芬,滕奇志,等.岩石薄片正交偏光图像的颗粒分割方法[J].科学技术与工程,2013,13(31):9201-9206. Wu Yong, Su Guifen, Teng Qizhi, et al. A Particles Segmentation Method of Rock Slice Orthogonal Polarization Images[J]. Science Technology and Engineering, 2013, 13(31):9201-9206.
[29] 冯俊岭,包志民,吕长禄,等.岩石薄片显微图像采集技术及应用[J].中国矿业,2014,23(14):168-172. Feng Junling, Bao Zhimin, Lü Changlu, et al. Rock Microsection Images Capturing Technologies and Application[J]. China Mining Magazine, 2014, 23(14):168-172.
[30] 王德滋,谢磊. 光性矿物学[M]. 3版. 北京:科学出版社,2008:97. Wang Dezi, Xie Lei. Light Mineralogy[M]. 3rd ed. Beijing:Science Press, 2008:97.
[31] Li F, Lu W. Coherence Attribute at Different Spectral Scales[J]. Interpretation, 2014, 2(1):SA99-SA106.
[32] 王静,张军华,王延光,等.特征值相干理论诠释及效果比较[J].地球物理学进展,2019, 34(5):1917-1923. Wang Jing, Zhang Junhua, Wang Yanguang, et al. Annotation and Effect Comparison of Eigenvalue Coherence[J]. Progress in Geophysics, 2019, 34(5):1917-1923.
[33] 李郁峰,陈念年,张佳成.一种快速高灵敏度聚焦评价函数[J].计算机应用研究,2010,27(4):1534-1536. Li Yufeng, Chen Niannian, Zhang Jiacheng.Fast and High Sensitivity Focusing Evaluation Function[J]. Application Research of Computers, 2010, 27(4):1534-1536.
[1] 李慧盈, 李文辉, 陈圣波. 一种机载雷达点云数据的快速分类方法[J]. J4, 2010, 40(5): 1205-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .