吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1908-1920.doi: 10.13278/j.cnki.jjuese.20200157

• 地球探测与信息技术 • 上一篇    下一篇

无人机遥感技术在甘肃北山地区地质填图中的应用

戴均豪1, 薛林福1, 李忠潭1, 桑学佳2, 马建雄3   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 中国矿业大学环境科学与空间信息学院, 江苏 徐州 221008;
    3. 重庆市勘测院, 重庆 401121
  • 收稿日期:2020-07-07 出版日期:2021-11-26 发布日期:2021-11-24
  • 作者简介:戴均豪(1996-),男,硕士研究生,主要从事无人机地质应用和人工智能找矿预测研究,E-mail:daijh18@jlu.edu.cn
  • 基金资助:
    中国地质调查局地质调查项目(DD20160050)

Application of UAV Remote Sensing Technology in Geological Mapping in Gansu Beishan Area

Dai Junhao1, Xue Linfu1, Li Zhongtan1, Sang Xuejia2, Ma Jianxiong3   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China;
    3. Chongqing Survey Institute, Chongqing 401121, China
  • Received:2020-07-07 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the Geological Survey Project of China Geology Survey (DD20160050)

摘要: 甘肃北山地区岩浆岩及变质岩出露广泛,植被稀少,地势平缓,是无人机遥感开展地质填图试验的理想目标区。为解决传统地质填图方法受地形、环境限制和投入高及工作周期长等问题,选取北山长流水地区20 km2化探重点工作区为目标区,利用大疆精灵4专业版无人机采集图像,并采用Photoscan软件合成高分辨率正射影像以及三维模型,建立解译标志,对目标区域进行地质解译,获得比前人1:1万地质图更加精细的地质图。该方法较传统填图方法能够解译出地质体形态、岩脉产状、微小断裂等更详细的地质内容,并能提供划分岩脉期次的证据。

关键词: 无人机, 甘肃北山, 地质填图, 遥感

Abstract: The magmatic and metamorphic rocks in Gansu Beishan area are widely exposed, vegetation is sparse, and the terrain is gentle. It is an ideal area for UAV remote sensing geological mapping experiments. In order to solve the problems of traditional geological mapping, such as topography and environmental constraints, high investment, and long work cycle, etc., the 20 km2 geochemical exploration key work area in Changliushui area of Beishan was selected as a target, the DJI Phantom 4 professional drone was used to collect images, and the photoscan software was used to synthesize high-resolution orthophotos and three-dimensional models, so as to establish interpretation signs, and perform geological interpretation of the target area to obtain a more refined geological map than the previous 1:10 000 geological map. Compared with the traditional mapping method, this method can capture more detailed geological contents such as geological body shape, dike occurrence, and micro-faults, and this can provide a basis for dividing dike stages.

Key words: UAV, Gansu Beishan, geological mapping, remote sensing

中图分类号: 

  • P623
[1] 刘雪亚. 中国西部北山造山带的大地构造及其演化[C]//中国地质科学院地质研究所文集(28).[S. l.]:中国地质学会,1995:12. Liu Xueya. Geotectonics and Evolution of the Beishan Orogenic Belt in Western China[C]//Collected Works of Institute of Geology(28).[S. l.]:Chinese Academy of Geological Sciences, 1995:12.
[2] 苗来成,朱明帅,张福勤.北山地区中生代岩浆活动与成矿构造背景分析[J].中国地质,2014,41(4):1190-1204. Miao Laicheng, Zhu Mingshuai, Zhang Fuqin. Analysis of Mesozoic Magmatic Activity and Metallogenic Tectonic Setting in Beishan Area[J]. China Geology, 2014,41(4):1190-1204.
[3] 陈柏林,吴淦国,叶德金,等.北山地区金矿类型、成矿规律和找矿方向[J].地质力学学报,2001,7(3):217-223. Chen Bolin, Wu Ganguo, Ye Dejin, et al. Types, Metallogenic Regularities and Prospecting Directions of Gold Deposits in Beishan Area[J]. Journal of Geomechanics, 2001, 7(3):217-223.
[4] 王盛栋. 甘肃北山中部地区古生代洋板块地层重建与构造演化[D].北京:中国地质大学(北京),2017. Wang Shengdong. Stratigraphic Reconstruction and Tectonic Evolution of the Paleozoic Oceanic Plate in the Central Beishan Area of Gansu[D]. Beijing:China University of Geosciences(Beijing), 2017.
[5] 赵宏刚,梁积伟,王驹,等.甘肃北山算井子埃达克质花岗岩年代学、地球化学特征及其构造意义[J].地质学报,2019,93(2):329-352. Zhao Honggang, Liang Jiwei, Wang Ju, et al.Chronology, Geochemical Characteristics and Tectonic Significance of the Adakitic Granites in Suanjingzi, Beishan, Gansu[J]. Acta Geologica Sinica,2019,93(2):329-352.
[6] 徐杰,田金鹏.肃北县长流水金矿矿床地质特征与成矿分析[J].世界有色金属,2017(22):132,134. Xu Jie, Tian Jinpeng. Geological Characteristics and Metallogenic Analysis of Changliushui Gold Deposit in Subei County[J]. World Nonferrous Metals, 2017(22):132, 134.
[7] 李增达. 甘肃花牛山铅锌银多金属矿田岩浆成矿作用与找矿[D]. 北京:中国地质大学(北京),2018. Li Zengda. Magmatic Mineralization and Prospecting of the Huaniushan Lead-Zinc-Silver Polymetallic Ore Field in Gansu[D]. Beijing:China University of Geosciences (Beijing), 2018.
[8] 左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003,12(1):1-15. Zuo Guochao, Liu Yike, Liu Chunyan. Tectonic Framework and Evolution of Beishan Area in Ganxin, Mongolia[J]. Journal of Gansu Geology, 2003, 12(1):1-15.
[9] 任广利, 杨敏, 李健强,等. 高光谱蚀变信息在金矿找矿预测中的应用研究:以北山方山口金矿线索为例[J]. 国土资源遥感, 2017,29(3):182-190. Ren Guangli, Yang Min, Li Jianqiang, et al.Application of Hyperspectral Alteration Information in Gold Prospecting Prediction:Taking Beishan Fangshankou Gold Deposit as an Example[J]. Remote Sensing for Land and Resources, 2017,29(3):182-190.
[10] 刘德长, 田丰, 邱骏挺,等. 柳园-方山口地区航空高光谱遥感固体矿产探测及找矿效果[J]. 地质学报, 2017,91(12):190-204. Liu Dechang, Tian Feng, Qiu Junting, et al. Aerial Hyperspectral Remote Sensing Solid Mineral Exploration and Prospecting Effect in Liuyuan-Fangshankou Area[J]. Acta Geology Sinica, 2017,91(12):190-204.
[11] 何养珍,乔立斌,魏庆林,等. 甘肃省肃北县长流水金矿床地质普查报告[R]. 张掖:甘肃有色地质勘查局四队,2008. He Yangzhen, Qiao Libin, Wei Qinglin, et al. Report on the Geological Survey of the Changliushui Gold Deposit in Subei County, Gansu Province[R]. Zhangye:The Fourth Team of Gansu Nonferrous Geological Exploration Bureau, 2008.
[12] 巩颜学,蔡厚维,黄丕新,等. 花牛山幅K-46-108-A长流水幅K-46-108-B柳园镇幅K-46-108-C臭水沟幅K-46-108-D1/5万区域地质调查报告(地质部分)(物探、重砂、化探部分)[R]. 酒泉:甘肃省地矿局酒泉地质矿产调查队十四分队,1987. Gong Yanxue, Cai Houwei, Huang Pixin, et al. Huaniu Mountain Sheet K-46-108-A Changliushui Sheet K-46-108-B Liuyuan Town Sheet K-46-108-C Choushuigou Sheet K-46-108-D1:50000 Regional Geological Survey Report (Geological Part) (Physical Prospecting, Heavy Sand, Geochemical Prospecting Part)[R]. Jiuquan:The 14th Division of Jiuquan Geological and Mineral Survey Team, Gansu Bureau of Geology and Mineral Resources, 1987.
[13] 徐杰,段兴雷,郑海保,等. 甘肃省肃北县长流水金矿床补充详查地质报告[R]. 张掖:甘肃省有色金属地质勘查局张掖矿产勘查院, 2014. Xu Jie, Duan Xinglei, Zheng Haibao, et al. Supplementary Detailed Survey Geological Report of the Changliushui Gold Deposit in Subei County, Gansu Province[R]. Zhangye:Zhangye Mineral Exploration Institute, Non-Ferrous Metals Geological Exploration Bureau of Gansu Province, 2014.
[14] Ferrero A M, Migliazza M, Roncella R, et al. Rock Cliffs Hazard Analysis Based on Remote Geostructural Surveys:The Campione Del Garda Case Study (Lake Garda, Northern Italy)[J]. Geomorphology, 2011, 125:457-471.
[15] Nex F, Remondino F. UAV for 3D Mapping Applications:A Review[J]. Appl Geomatics, 2014, 6:1-15.
[16] Salvini R, Mastrorocco G, Seddaiu M, et al. The Use of an Unmanned Aerial Vehicle for Fracture Mapping Within a Marble Quarry (Carrara, Italy):Photogrammetry and Discrete Fracture Network Modelling[J]. Geomatics Natural Hazards & Risk,2016, 8:34-52.
[17] Vollgger S A, Cruden A R. Mapping Folds and Fractures in Basement and Cover Rocks Using UAV Photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia[J]. Struct Geol, 2016, 85:168-187.
[18] Wang J L, Zhu S. Refined Micro-Scale Geological Disaster Susceptibility Evaluation Based on UAV Tilt Photography Data and Weighted Certainty Factor Method in Mountainous Area[J]. Ecotoxicology and Environmental Safety, 2020, 189:110005.
[19] 韩文权,任幼蓉,赵少华.无人机遥感在应对地质灾害中的主要应用[J].地理空间信息,2011,9(5):6-8,163. Han Wenquan, Ren Yourong, Zhao Shaohua. The Main Application of Drone Remote Sensing in Response to Geological Disasters[J]. Geospatial Information, 2011, 9(5):6-8, 163.
[20] Niethammer U, James M R, Rothmund S, et al. UAV-Based Remote Sensing of the Super-Sauze Landslide:Evaluation and Results[J]. Engineering Geology, 2012, 128:2-11.
[21] 王凤艳,赵明宇,王明常,等.无人机摄影测量在矿山地质环境调查中的应用[J].吉林大学学报(地球科学版),2020,50(3):866-874. Wang Fengyan, Zhao Mingyu, Wang Mingchang, et al. Application of UAV Photogrammetry in Mine Geological Environment Investigation[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3):866-874.
[22] 邵延秀, 张波, 邹小波, 等. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质,2017,39(6):1185-1197. Shao Yanxiu, Zhang Bo, Zou Xiaobo, et al. Practice of Rapid Geological Survey Using UAV-Borne LiDAR[J]. Seismology and Geology, 2017, 39(6):1185-1197.
[23] Cruden A, Vollgger S, Dering G, et al. High Spatial Resolution Mapping of Dykes Using Unmanned Aerial Vehicle (UAV) Photogrammetry:New Insights on Emplacement Processes[J]. Acta Geol Sin, 2016, 90:52-53.
[24] Dering G, Micklethwaite S, Barnes S J, et al. An Elevated Perspective:Dyke-Related Fracture Networks Analysed with UAV Photogrammetry[J]. Acta Geol Sin, 2016, 90:54-55.
[25] Sang X,Xue L, Ran X, et al, Intelligent High-Resolution Geological Mapping Based on SLIC-CNN[J]. ISPRS Int J Geo-Inf, 2020, 9:99.
[26] Zhang H, Chen N H, Gao B W, et al.Semi-Automatic Mapping of Dyke and Dyke-Related Fractures Using UAV-Based Photogrammetric Data:A Case Study From Sijiao Island, Coastal Southeastern China[J]. Journal of Structural Geology, 2020, 132:103971.
[27] 桑学佳. 无人机及深度学习在地质调查中的应用[D].长春:吉林大学,2018. Sang Xuejia. Application of Drones and Deep Learning in Geological Survey[D]. Changchun:Jilin University, 2018.
[1] 王博帅, 蒲东川, 李婷婷, 牛雪峰. 基于多源遥感影像的长春市城市建成区提取[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1284-1294.
[2] 乔中坤, 马国庆, 于平, 周文纳, 张志厚, 焦健, 周帅, 孟兆海, 唐水亮. 基于欧拉反褶积法的无人机航磁找矿应用[J]. 吉林大学学报(地球科学版), 2021, 51(2): 552-560.
[3] 王明常, 朱春宇, 陈学业, 王凤艳, 李婷婷, 张海明, 韩有文. 基于FPN Res-Unet的高分辨率遥感影像建筑物变化检测[J]. 吉林大学学报(地球科学版), 2021, 51(1): 296-306.
[4] 吴燕清, 王世成, 丁园, 王文正, 余弘龙, 王青, 李杨. 内蒙古新城子盆地铀及多金属矿产勘查遥感应用[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1917-1928.
[5] 孙立影, 杨晨, 赵海士, 常志勇. 基于极限学习机的遥感地球化学反演模型[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1929-1938.
[6] 王凤艳, 赵明宇, 王明常, 张旭晴, 周凯. 无人机摄影测量在矿山地质环境调查中的应用[J]. 吉林大学学报(地球科学版), 2020, 50(3): 866-874.
[7] 柳长源, 刘鹏, 毕晓君. 基于自适应可变滤镜的地类变化预测模型[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1477-1485.
[8] 吴云霞, 吕凤军, 邢立新, 刘新星. 独山城地区多元信息干热岩预测模型[J]. 吉林大学学报(地球科学版), 2019, 49(3): 880-892.
[9] 贺金鑫, 姜天, 董永胜, 韩凯旭, 马宁, 熊玥. 基于Landsat 8的辽宁弓长岭区遥感蚀变信息提取[J]. 吉林大学学报(地球科学版), 2019, 49(3): 893-901.
[10] 樊瑞雪, 邢立新, 潘军, 单玄龙, 仲伟敬. 油砂的光谱反射特征及其遥感应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 603-610.
[11] 李刚, 孙桂华, 姚永坚, 朱博勤, 张耀明. 三沙湾海岸线时空演变[J]. 吉林大学学报(地球科学版), 2019, 49(1): 196-205.
[12] 王吉亮, 施炎, 周炳强, 杨静, 郝文忠, 廖立兵, 康双双. 逐层开挖工程整体三维影像模型构建方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1589-1595.
[13] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378.
[14] 赵玉岩, 李兵, 陆继龙, 郝立波, 赵禹, 王东明. 中国东北浅覆盖区地质填图物化探信息协同辅助技术[J]. 吉林大学学报(地球科学版), 2018, 48(1): 318-333.
[15] 高红梅, 兰永伟, 周莉, 孟丽岩. 温度作用下缺陷花岗岩热损伤:以甘肃北山缺陷花岗岩为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1795-1802.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .