吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1366-1380.doi: 10.13278/j.cnki.jjuese.20200315
宋东松1,2, 冯震1,2, 金红山3, 孙逸涵1,2
Song Dongsong1,2, Feng Zhen1,2, Jin Hongshan3, Sun Yihan1,2
摘要: 确定土体动剪切模量的常用方法有规范法、Kumar法和自相关函数法,确定相应阻尼比的方法有规范法、Das and Luo法、Kokusho法、Kumar法和互相关函数法,为了分析不同方法所产生差异,实现定量化对比分析,笔者以福建标准砂(粒径为0.5~1.0 mm)为研究对象,采用不排水的应力控制动三轴试验,探讨不同的确定土体动剪切模量和阻尼比方法的差异性,并给出了不同土体条件建议选用的方法。结果表明:1)3种方法确定动剪切模量的结果有一定的差异,随剪应变的增大结果的差异逐渐增大,有效围压对结果的差异性有所影响,当剪应变为4×10-3,有效围压为100 kPa时,3种方法差异显著,相对误差最大接近20%;2)而5种方法确定阻尼比的结果差异显著,随着剪应变的增大,5种方法确定的阻尼比相对误差大体上均在迅速减小,只有规范法在有效围压为100 kPa时,其相对误差有较小的增大趋势;5种方法中,Kumar法确定的阻尼比最接近平均阻尼比,互相关函数法远高于平均阻尼比,Das and Luo法和Kokusho法确定的阻尼比基本一致但低于平均阻尼比。建议以后的工程应用中,加载方式为应力控制时,可采用自相关函数法确定动剪切模量,采用Kumar法确定阻尼比,二者确定的动剪切模量和阻尼比均最接近平均值。
中图分类号:
[1] 蒋其峰, 荣棉水, 彭艳菊. 动剪切模量比对反应谱影响的定量分析[J]. 吉林大学学报(地球科学版), 2015, 45(3):876-885. Jiang Qifeng, Rong Mianshui, Peng Yanju. Quantitative Analysis of the Effect of Dynamic Shear Modulus Ratio on Response Spectrum[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):876-885. [2] 黄芮, 张延军, 李洪岩, 等. 辽河三角洲相沉积软土动力特性试验[J]. 吉林大学学报(地球科学版), 2010, 40(5):1115-1120. Huang Rui, Zhang Yanjun, Li Hongyan, et al. Dynamic Characteristics of Sedimentary Soft Soil in the Liaohe Delta[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5):1115-1120. [3] 兰景岩, 刘红帅, 吕悦军, 等. 表层土剪切波速的不确定性对地表设计谱平台值的影响[J]. 吉林大学学报(地球科学版), 2012, 42(3):770-776. Lan Jingyan, Liu Hongshuai, Lü Yuejun, et al. The Influence of the Uncertainty of Surface Soil Shear Wave Velocity on the Platform Value of Surface Design Spectrum[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3):770-776. [4] Seed H B, Idriss I M. Soil Moduli and Damping Factors for Dynamic Response Analyses[R]. Berkeley:Earthquake Engineering Research Centre, 1970. [5] Amr M M, Manal A S, Hussein H E. Evaluation of Dynamic Properties of Calcareous Sands in Egypt at Small and Medium Shear Strain Ranges[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:692-708. [6] Jafarian Y, Javdanian H, Haddad A. Dynamic Properties of Calcareous and Siliceous Sands Under Isotropic and Anisotropic Stress Conditions[J]. Soils and Foundations, 2018, 58:172-184. [7] Pradeep K D, Adapa M K, Subhamoy B. Dynamic Soil Properties for Seismic Ground Response Studies in Northeastern India[J]. Soil Dynamics and Earthquake Engineering, 2017, 100:357-370. [8] Dutta T T, Saride S. Influence of Shear Strain on the Poisson's Ratio of Clean Sands[J]. Geotechnical and Geological Engineering, 2016, 34:1359-1373. [9] Eka C, Jl A, Akb C, et al. Dynamic Behavior of Clay Modifed with Polypropylene Fber Under Freeze-Thaw Cycles[J]. Transportation Geotechnics, 2019, 21:1-12. [10] Jafarzadeh F, Sadeghi H. Experimental Study on Dynamic Properties of Sand with Emphasis on the Degree of Saturation[J]. Soil Dynamics & Earthquake Engineering, 2012, 32:26-41. [11] Wichtmann T, Ma N H, Triantafyllidis T. On the Influence of A Non-Cohesive Fines Content on Small Strain Stiffness, Modulus Degradation and Damping of Quartz Sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69:103-114. [12] Pham H H G, Peter O V I, William F V I, et al. Small-Strain Shear Modulus of Calcareous Sand and Its Dependence on Particle Characteristics and Gradation[J]. Soil Dynamics and Earthquake Engineering, 2017, 100:371-379. [13] Carraro J, Bortolotto M S. Stiffness Degradation and Damping of Carbonate and Silica Sands[C]//Frontiers in Offshore Geotechnics:III:Meyer. London:Taylor & Francis Group, 2015:1179-1183. [14] Orakoglu M E, Liu J, Niu F. Dynamic Behavior of Fiber-Reinforced Soil Under Freeze-Thaw Cycles[J]. Soil Dynamics and Earthquake Engineering, 2017, 101:269-284. [15] Ling X Z, Zhang F, Li Q L, et al. Dynamic Shear Modulus and Damping Ratio of Frozen Compacted Sand Subjected to Freeze-Thaw Cycle Under Multi-Stage Cyclic Loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 76(2):111-121. [16] 土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划出版社, 2019. Standard for Geotechnical Testing Method:GB/T 50123-2019[S]. Beijing:China Planning Press, 2019. [17] Kumar S S, Krishna A M, Dey A. Evaluation of Dynamic Properties of Sandy Soil at High Cyclic Strains[J]. Soil Dynamics and Earthquake Engineering, 2017, 99. [18] Das B M, Luo Z. Principles of Soil Dynamics[M]. 3rd ed. Stanford:Cengage Learning, 2016. [19] 李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1):71-80. Li Ruishan, Chen Longwei, Yuan Xiaoming, et al. Experimental Study on the Influence of Load Frequency on Dynamic Modulus Damping Ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):71-80. [20] Kokusho T. Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range[J]. Soils and Foundation, 1980, 20(2):45-60. [21] 刘保健, 周加林. 土阻尼比的滞后角测试法[J]. 大坝观测与土工测试, 1995, 19(4):37-40. Liu Baojian, Zhou Jialin. The Method of Measuring the Phase Angle of Damping Ratio[J]. Dam Observation and Geotechnical Tests, 1995, 19(4):37-40. [22] 罗飞, 赵淑萍, 马巍, 等. 冻结黏土的动力学参数确定方法研究[J]. 冰川冻土, 2016, 38(5):1340-1345. Luo Fei, Zhao Shuping, Ma Wei, et al. Research on the Determination Method of Dynamic Parameters of Frozen Clay[J]. Journal of Glaciology and Geocryology, 2016, 38(5):1340-1345. [23] 梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4):1368-1376, 1386. Liang Ke, Chen Guoxing, He Yang, et al. A New Method for Calculating Dynamic Modulus and Damping Ratio Based on Correlation Function Theory[J]. Rock and Soil Mechanics, 2019, 40(4):1368-1376, 1386. [24] Green R A, Mitchell J K, Polito C P. An Energy-Based Excess Pore Pressure Generation Model for Cohesionless Soils[C]//Proceedings of the John Booker Memorial Symposium Sydney, New South Wales, Australia. Rotterdam:A A Balkema Publishers, 2000. [25] 陈伟, 孔令伟, 朱建群. 一种土的阻尼比近似计算方法[J]. 岩土力学, 2007, 28(增刊1):789-791. Chen Wei, Kong Lingwei, Zhu Jianqun. A Simple Method to Approximately Determine the Damping Ratio of Soils[J]. Rock and Soil Mechanics, 2007, 28(Sup. 1):789-791. [26] 陈国兴. 岩土地震工程学[M]. 北京:科学出版社, 2007. Chen Guoxing. Geotechnical Earthquake Engineering[M]. Beijing:Science Press, 2007. |
[1] | 苏亮, 时伟, 水伟厚, 曹建萌. 高能级强夯法处理深厚吹填砂土地基现场试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1560-1569. |
[2] | 洪勇, 李子睿, 唐少帅, 王陆阳, 李亮. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1814-1822. |
[3] | 蒋其峰, 荣棉水, 彭艳菊. 动剪切模量比对反应谱影响的定量分析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 876-885. |
[4] | 年廷凯,余鹏程,柳楚楠,陆淼嘉,刁美慧. 吹填粉砂土固结蠕变试验及模型[J]. 吉林大学学报(地球科学版), 2014, 44(3): 918-924. |
|