吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1366-1380.doi: 10.13278/j.cnki.jjuese.20200315

• 岩土防灾与减灾 • 上一篇    下一篇

确定砂土动剪切模量和阻尼比的方法对比

宋东松1,2, 冯震1,2, 金红山3, 孙逸涵1,2   

  1. 1. 河北大学河北省土木工程监测与评估技术创新中心, 河北 保定 071002;
    2. 河北大学建筑工程学院, 河北 保定 071002;
    3. 91144部队, 辽宁 大连 116041
  • 收稿日期:2020-12-21 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 冯震(1972-),男,教授,博士,主要从事岩土工程方面的研究,E-mail:2631957655@qq.com E-mail:2631957655@qq.com
  • 作者简介:宋东松(1994-),男,硕士研究生,主要从事土动力学方面的研究,E-mail:18233295386@163.com
  • 基金资助:
    中国地震局工程力学研究所基本科研业务费专项资助项目(2019EEEVL0202);河北省自然科学基金项目(E2020201017,E2019201422)

Comparison of Methods for Determining Sand Dynamic Shear Modulus and Damping Ratio

Song Dongsong1,2, Feng Zhen1,2, Jin Hongshan3, Sun Yihan1,2   

  1. 1. Hebei Civil Engineering Monitoring and Evaluation Technology Innovation Center, Hebei University, Baoding 071002, Hebei, China;
    2. College of Civil Engineering and Architecture, Hebei University, Baoding 071002, Hebei, China;
    3. 91144 Troops, Dalian 116041, Liaoning, China
  • Received:2020-12-21 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration(2019EEEVL0202) and the Natural Science Foundation of Hebei Province (E2020201017,E2019201422)

摘要: 确定土体动剪切模量的常用方法有规范法、Kumar法和自相关函数法,确定相应阻尼比的方法有规范法、Das and Luo法、Kokusho法、Kumar法和互相关函数法,为了分析不同方法所产生差异,实现定量化对比分析,笔者以福建标准砂(粒径为0.5~1.0 mm)为研究对象,采用不排水的应力控制动三轴试验,探讨不同的确定土体动剪切模量和阻尼比方法的差异性,并给出了不同土体条件建议选用的方法。结果表明:1)3种方法确定动剪切模量的结果有一定的差异,随剪应变的增大结果的差异逐渐增大,有效围压对结果的差异性有所影响,当剪应变为4×10-3,有效围压为100 kPa时,3种方法差异显著,相对误差最大接近20%;2)而5种方法确定阻尼比的结果差异显著,随着剪应变的增大,5种方法确定的阻尼比相对误差大体上均在迅速减小,只有规范法在有效围压为100 kPa时,其相对误差有较小的增大趋势;5种方法中,Kumar法确定的阻尼比最接近平均阻尼比,互相关函数法远高于平均阻尼比,Das and Luo法和Kokusho法确定的阻尼比基本一致但低于平均阻尼比。建议以后的工程应用中,加载方式为应力控制时,可采用自相关函数法确定动剪切模量,采用Kumar法确定阻尼比,二者确定的动剪切模量和阻尼比均最接近平均值。

关键词: 规范法, Kumar法, 自相关函数法, Das and Luo法, Kokusho法, 互相关函数法, 动剪切模量, 阻尼比, 砂土

Abstract: At present, the commonly used methods to determine the dynamic shear modulus of soil include the standard method, the Kumar method and the autocorrelation function method. The methods to determine the corresponding damping ratio include the standard method, the Das and Luo method, the Kokusho method, the Kumar method, and the cross-correlation function method. So far, the understanding of the differences caused by the different methods is not deep enough, and there is a lack of quantitative comparative analysis. In this study, the Fujian standard sand (particle size 0.5-1.0 mm) was used as the research object, and the undrained stress-controlled dynamic triaxial test was used to discuss the differences of the different methods so as to determine the dynamic shear modulus and damping ratio of the sand, and then to recommend the method to use. The results show that:1) The dynamic shear modulus determined by the three methods has a certain difference. The difference gradually increases with the increase of the shear strain, but the difference decreases with the increase of the effective confining pressure. When the shear strain is 4×10-3 and the effective confining pressure is 100 kPa, the difference between the three methods is the most significant, and the maximum relative error is close to 20%. 2) The damping ratios of the five methods have significant differences. The relative errors of the five methods for determining the damping ratio decrease rapidly with the increase of the shear strain; When the effective confining pressure is 100 kPa, the damping ratio only by the standard method has a smaller increasing trend. Among them, the damping ratio determined by the Kumar method is closest to the average damping ratio, the damping ratio by the cross-correlation function method is much higher than the average damping ratio, and the damping ratio determined by the Das and Luo method and the Kokusho method is basically the same but lower than the average damping ratio. So, it is recommended that in future engineering applications, when the loading method is stress control, the correlation function method can be used to determine the dynamic shear modulus and the Kumar method to determine the damping ratio.

Key words: standard method, Kumar method, autocorrelation function method, Das and Luo method, Kokusho method, cross-correlation function method, dynamic shear modulus, damping ratio, sand

中图分类号: 

  • TU4
[1] 蒋其峰, 荣棉水, 彭艳菊. 动剪切模量比对反应谱影响的定量分析[J]. 吉林大学学报(地球科学版), 2015, 45(3):876-885. Jiang Qifeng, Rong Mianshui, Peng Yanju. Quantitative Analysis of the Effect of Dynamic Shear Modulus Ratio on Response Spectrum[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):876-885.
[2] 黄芮, 张延军, 李洪岩, 等. 辽河三角洲相沉积软土动力特性试验[J]. 吉林大学学报(地球科学版), 2010, 40(5):1115-1120. Huang Rui, Zhang Yanjun, Li Hongyan, et al. Dynamic Characteristics of Sedimentary Soft Soil in the Liaohe Delta[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5):1115-1120.
[3] 兰景岩, 刘红帅, 吕悦军, 等. 表层土剪切波速的不确定性对地表设计谱平台值的影响[J]. 吉林大学学报(地球科学版), 2012, 42(3):770-776. Lan Jingyan, Liu Hongshuai, Lü Yuejun, et al. The Influence of the Uncertainty of Surface Soil Shear Wave Velocity on the Platform Value of Surface Design Spectrum[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3):770-776.
[4] Seed H B, Idriss I M. Soil Moduli and Damping Factors for Dynamic Response Analyses[R]. Berkeley:Earthquake Engineering Research Centre, 1970.
[5] Amr M M, Manal A S, Hussein H E. Evaluation of Dynamic Properties of Calcareous Sands in Egypt at Small and Medium Shear Strain Ranges[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:692-708.
[6] Jafarian Y, Javdanian H, Haddad A. Dynamic Properties of Calcareous and Siliceous Sands Under Isotropic and Anisotropic Stress Conditions[J]. Soils and Foundations, 2018, 58:172-184.
[7] Pradeep K D, Adapa M K, Subhamoy B. Dynamic Soil Properties for Seismic Ground Response Studies in Northeastern India[J]. Soil Dynamics and Earthquake Engineering, 2017, 100:357-370.
[8] Dutta T T, Saride S. Influence of Shear Strain on the Poisson's Ratio of Clean Sands[J]. Geotechnical and Geological Engineering, 2016, 34:1359-1373.
[9] Eka C, Jl A, Akb C, et al. Dynamic Behavior of Clay Modifed with Polypropylene Fber Under Freeze-Thaw Cycles[J]. Transportation Geotechnics, 2019, 21:1-12.
[10] Jafarzadeh F, Sadeghi H. Experimental Study on Dynamic Properties of Sand with Emphasis on the Degree of Saturation[J]. Soil Dynamics & Earthquake Engineering, 2012, 32:26-41.
[11] Wichtmann T, Ma N H, Triantafyllidis T. On the Influence of A Non-Cohesive Fines Content on Small Strain Stiffness, Modulus Degradation and Damping of Quartz Sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69:103-114.
[12] Pham H H G, Peter O V I, William F V I, et al. Small-Strain Shear Modulus of Calcareous Sand and Its Dependence on Particle Characteristics and Gradation[J]. Soil Dynamics and Earthquake Engineering, 2017, 100:371-379.
[13] Carraro J, Bortolotto M S. Stiffness Degradation and Damping of Carbonate and Silica Sands[C]//Frontiers in Offshore Geotechnics:III:Meyer. London:Taylor & Francis Group, 2015:1179-1183.
[14] Orakoglu M E, Liu J, Niu F. Dynamic Behavior of Fiber-Reinforced Soil Under Freeze-Thaw Cycles[J]. Soil Dynamics and Earthquake Engineering, 2017, 101:269-284.
[15] Ling X Z, Zhang F, Li Q L, et al. Dynamic Shear Modulus and Damping Ratio of Frozen Compacted Sand Subjected to Freeze-Thaw Cycle Under Multi-Stage Cyclic Loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 76(2):111-121.
[16] 土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划出版社, 2019. Standard for Geotechnical Testing Method:GB/T 50123-2019[S]. Beijing:China Planning Press, 2019.
[17] Kumar S S, Krishna A M, Dey A. Evaluation of Dynamic Properties of Sandy Soil at High Cyclic Strains[J]. Soil Dynamics and Earthquake Engineering, 2017, 99.
[18] Das B M, Luo Z. Principles of Soil Dynamics[M]. 3rd ed. Stanford:Cengage Learning, 2016.
[19] 李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1):71-80. Li Ruishan, Chen Longwei, Yuan Xiaoming, et al. Experimental Study on the Influence of Load Frequency on Dynamic Modulus Damping Ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):71-80.
[20] Kokusho T. Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range[J]. Soils and Foundation, 1980, 20(2):45-60.
[21] 刘保健, 周加林. 土阻尼比的滞后角测试法[J]. 大坝观测与土工测试, 1995, 19(4):37-40. Liu Baojian, Zhou Jialin. The Method of Measuring the Phase Angle of Damping Ratio[J]. Dam Observation and Geotechnical Tests, 1995, 19(4):37-40.
[22] 罗飞, 赵淑萍, 马巍, 等. 冻结黏土的动力学参数确定方法研究[J]. 冰川冻土, 2016, 38(5):1340-1345. Luo Fei, Zhao Shuping, Ma Wei, et al. Research on the Determination Method of Dynamic Parameters of Frozen Clay[J]. Journal of Glaciology and Geocryology, 2016, 38(5):1340-1345.
[23] 梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4):1368-1376, 1386. Liang Ke, Chen Guoxing, He Yang, et al. A New Method for Calculating Dynamic Modulus and Damping Ratio Based on Correlation Function Theory[J]. Rock and Soil Mechanics, 2019, 40(4):1368-1376, 1386.
[24] Green R A, Mitchell J K, Polito C P. An Energy-Based Excess Pore Pressure Generation Model for Cohesionless Soils[C]//Proceedings of the John Booker Memorial Symposium Sydney, New South Wales, Australia. Rotterdam:A A Balkema Publishers, 2000.
[25] 陈伟, 孔令伟, 朱建群. 一种土的阻尼比近似计算方法[J]. 岩土力学, 2007, 28(增刊1):789-791. Chen Wei, Kong Lingwei, Zhu Jianqun. A Simple Method to Approximately Determine the Damping Ratio of Soils[J]. Rock and Soil Mechanics, 2007, 28(Sup. 1):789-791.
[26] 陈国兴. 岩土地震工程学[M]. 北京:科学出版社, 2007. Chen Guoxing. Geotechnical Earthquake Engineering[M]. Beijing:Science Press, 2007.
[1] 苏亮, 时伟, 水伟厚, 曹建萌. 高能级强夯法处理深厚吹填砂土地基现场试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1560-1569.
[2] 洪勇, 李子睿, 唐少帅, 王陆阳, 李亮. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1814-1822.
[3] 蒋其峰, 荣棉水, 彭艳菊. 动剪切模量比对反应谱影响的定量分析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 876-885.
[4] 年廷凯,余鹏程,柳楚楠,陆淼嘉,刁美慧. 吹填粉砂土固结蠕变试验及模型[J]. 吉林大学学报(地球科学版), 2014, 44(3): 918-924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高松, 宋莹, 王琳,蒋步新. 水体中秋兰姆特效降解菌的筛选及其降解性能研究[J]. J4, 2006, 36(03): 455 -457 .
[2] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[4] 丁志宏,冯平,毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用[J]. J4, 2009, 39(2): 276 -0280 .
[5] 于小平,张廷玉,刘财,陈增宝,许惠平,庞贺民. 应用GPS数据与重力数据确定大地水准面[J]. J4, 2008, 38(5): 904 -0907 .
[6] 张渊, 王力, 唐振, 张佳楠. 吉林省洮南市聚宝铜矿床的地质特征、流体包裹体研究[J]. J4, 2010, 40(5): 1047 -1052 .
[7] 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响--来自构造节理分析的证据[J]. J4, 2011, 41(3): 724 -734 .
[8] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790 -0795 .
[9] 钟宇红,房春生,邱立民,吕莉莎,张子宜,董德明,于连贵,刘 辉,刘春阳,苏红石,赵 静. 扫描电镜分析在大气颗粒物源解析中的应用[J]. J4, 2008, 38(3): 473 -0478 .
[10] 刘俊来, 唐渊, 宋志杰, Tran My Dung, 翟云峰, 吴文彬, 陈文. 滇西哀牢山构造带:结构与演化[J]. J4, 2011, 41(5): 1285 -1303 .