吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1463-1472.doi: 10.13278/j.cnki.jjuese.20210055

• 岩土防灾与减灾 • 上一篇    下一篇

液化场地高桩码头抗震性能地震动效应

孟畅1,2, 唐亮1,2   

  1. 1. 哈尔滨工业大学土木工程学院, 哈尔滨 150090;
    2. 黑龙江省寒区轨道交通工程技术研究中心, 哈尔滨 150090
  • 收稿日期:2021-02-19 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 唐亮(1981-),男,教授,博士,主要从事土动力学与岩土地震工程、地下工程等方面研究,E-mail:hit_tl@163.com E-mail:hit_tl@163.com
  • 作者简介:孟畅(1995-),男,硕士研究生,主要从事土动力学与岩土地震工程研究,E-mail:hit_mc@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFE0205100);国家自然科学基金项目(51578195);黑龙江省应用技术研究与开发计划项目(GA19A501)

Effects of Ground Motion Characteristics on Seismic Responses of Pile-Supported Wharf in Liquefiable Soils

Meng Chang1,2, Tang Liang1,2   

  1. 1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;
    2. Heilongjiang Research Center for Rail Transit Engineering in Cold Regions, Harbin 150090, China
  • Received:2021-02-19 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Key R&D Program of China (2016YFE0205100), the National Natural Science Foundation of China (51578195) and the Technology Research and Development Plan Program of Heilongjiang Province (GA19A501)

摘要: 为了研究地震动特性对液化场地高桩码头抗震性能的影响,本文依托高桩码头工程实例,建立了液化场地全直桩高桩码头地震反应分析数值模型,系统分析了地震作用下高桩码头的关键动力响应特征,确定了高桩码头各抗震性能需求指标,揭示了地震动特性对各抗震性能需求指标的影响规律。研究表明:地震作用下高桩码头桩基受弯、受剪和受压薄弱环节分别出现在持力层与上部粉质黏土层交界处、岸坡标高处和砂层与上部粉质黏土层交界处;峰值加速度、频谱特性和地震动输入方向均会显著影响高桩码头各项性能指标的抗震需求;高桩码头桩基的抗弯、抗剪和抗压性能需求分别由最靠陆侧桩桩顶处弯矩、各薄弱环节剪力和砂层与上部土层交界处轴力控制,抗震延性需求均由最靠海侧桩桩顶处水平位移需求控制。

关键词: 液化场地, 地震动特性, 抗震需求, 桩-土相互作用, 高桩码头

Abstract: In order to study the effect of ground motion characteristics on seismic performance of pile-supported wharf in liquefiable ground, a numerical model for seismic response analysis of pile-supported wharf with all-straight piles was established. The key dynamic response characteristics of pile-supported wharf under earthquakes were systematically analyzed, and the seismic performance demand indexes of pile-supported wharf were determined. The influence law of ground motion characteristics on seismic performance demand index was revealed. The results show that the weakness of bending, shear, and compression of pile foundation of pile-supported wharf occur at the junction of bearing layer and upper soil layer, bank elevation, and sand layer and upper soil layer, respectively. The peak acceleration, spectrum characteristics, and input direction of ground motion significantly affect the seismic demand of various performance indexes of pile-supported wharf. The flexural, shear, and compressive performance demand of pile-supported wharf are controlled by the bending moment at the top of the pile closest to the land side, the shear force of each weak link and the axial force at the junction of sand layer and upper soil layer, respectively. The seismic ductility demand is determined by the displacement demand at the top of the pile closest to the sea.

Key words: liquefiable ground, ground motion characteristics, seismic demand, pile-soil interaction, pile-supported wharf

中图分类号: 

  • TU43
[1] Yang D S. Deformation-Based Seismic Design Models for Waterfront Structures[D]. Corvallis:Oregon State University, 1999.
[2] Smith D, Naesgaard E, Kullmann H. Seismic Design of a New Pile and Deck Structure Adjacent to Existing Caissons Founded on Potentially Liquefiable Ground in Vancouver[C]//Proceedings of 13th World Conference on Earhtquake Engineering. Vancouver:[s. n.], 2004:1-14.
[3] Mccullough N J. The Seismic Geotechnical Modeling, Performance, and Analysis of Pile-Supported Wharves[D]. Corvallis:Oregon State University, 2003.
[4] 谢世楞. 奥克兰港高桩码头的震害对比[J]. 港工技术, 1990(4):13-17. Xie Shileng. Comparison of Seismic Damage at Auckland Harbour Pile-Wharf[J]. Port Engineering Technology, 1990(4):13-17.
[5] 高明, 赵颖, 靳道斌. 桩基码头抗震实验研究及动力分析[J]. 水利水运科学研究, 1981(4):37-50. Gao Ming, Zhao Ying, Jin Daobin. A Seismic Experimental Studies and Dynamic Analysis of Pile Supported Piers[J]. Journal of Nanjing Hydraulic Research Institute, 1981(4):37-50.
[6] 侯瑜京, 韩连兵, 梁建辉. 深水港码头围堤和群桩结构的离心模型试验[J]. 岩土工程学报, 2004, 26(5):594-600. Hou Yujing, Han Lianbing, Liang Jianhui. Centrifuge Modeling of Sea Dike and Pile Groups in a Habour[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5):594-600.
[7] Su L, Lu J, Elgamal A, et al. Seismic Performance of a Pile-Supported Wharf:Three-Dimensional Finite Element Simulation[J]. Soil Dynamics and Earthquake Engineering, 2017, 95:167-179.
[8] 苏雷. 液化侧向扩展场地桩-土体系地震模拟反应分析[D]. 哈尔滨:哈尔滨工业大学, 2016. Su Lei. Earthquake Simulation Response of Soil-Pile System in Liquefaction-Induced Lateral Spreading Ground[D]. Harbin:Harbin Institute of Technology, 2016.
[9] Conca D, Bozzoni F, Lai C G. Interdependencies in Seismic Risk Assessment of Seaport systems:Case Study at Largest Commercial Port in Italy[J]. Asce-Asme Journal of Risk and Uncertainty in Engineering Systems:Part A:Civil Engineering, 2020, 6(2). doi:10.1061/AJRUA6.0001043.
[10] Su L, Wan H P, Li Y, et al. Soil-Pile-Quay Wall System With Liquefaction-Induced Lateral Spreading:Experimental Investigation, Numerical Simulation, and Global Sensitivity Analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(11):04018087.1-04018087.17.
[11] Madabhushi G, Boksmati J I, Torres S G. Numerical and Centrifuge Modeling of Gravity Wharf Structures Subjected to Seismic Loading[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2020, 146(4):04020007.
[12] Geyin M, Maurer B W. Fragility Functions for Liquefaction-Induced Ground Failure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12). doi:10.1061/(ASCE) GT.1943-5606.0002416.
[13] 于仕达, 张延军, 李云峰. 安庆市某地区液化场地判别研究[J]. 世界地质, 2021, 40(1):170-175. Yu Shida, Zhang Yanjun, Li Yunfeng. Identification of Liquefaction Site in an Area of Anqing[J]. Global Geology, 2021, 40(1):170-175.
[14] 王炳煌. 高桩码头工程[M]. 北京:人民交通出版社, 2010. Wang Binghuang. High-Piled Wharf[M]. Beijing:People's Communications Press, 2010.
[15] Mckenna F. OpenSees:A Framework for Earthquake Engineering Simulation[J]. Computing in Science and Engineering, 2011, 13(4):58-66.
[16] 常士骠, 张苏民. 工程地质手册[M]. 北京:中国建筑工业出版社, 2007. Chang Shibiao, Zhang Sumin. Engineering Geology Handbook[M]. Beijing:China Architecture and Building Press, 2007.
[17] 张明义, 刘雪颖, 王永洪, 等.粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6):1804-1813. Zhang Mingyi, Liu Xueying, Wang Yonghong, et al. Field Test on Influencing Mechanism of Silty Soil and Silty Clay on Tip Resistance of Static[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1804-1813.
[18] 孟畅. 液化场地高桩码头地震易损性分析[D]. 哈尔滨:哈尔滨工业大学, 2020. Meng Chang. Seismic Fragility Analysis of the Pile-Supported Wharf in Liquefiable Soils[D]. Harbin:Harbin Institute of Technology, 2020.
[19] 梁兴文, 王社良, 李晓文. 混凝土结构设计原理[M]. 北京:科学出版社, 2003. Liang Xingwen, Wang Sheliang, Li Xiaowen. Principle of Concrete Structure Design[M]. Beijing:Science Press, 2003.
[20] 预应力混凝土用钢棒:GB/T 5223.3-2005[S]. 北京:中国标准出版社, 2006. Steel Bars Prestressed Concrete:GB/T 5223.3-2005[S]. Beijing:Standards Press of China, 2006.
[21] 张楠. 考虑结构-桩-土相互作用的PHC管桩抗震性能研究[D]. 天津:天津大学, 2014. Zhang Nan. Study on Seismic Performance of Pipe Piles Considering Soil-Pile-Superstructure Interaction[D]. Tianjin:Tianjin University, 2014.
[1] 张安琪, 苏雷, 凌贤长, 唐亮, 王建峰, 焉振. 高桩码头抗震简化分析方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1523-1534.
[2] 徐鹏举, 唐亮, 凌贤长, 高霞, 苏雷, 辛全明, 张勇强. 液化场地桩-土-桥梁结构地震相互作用简化分析方法[J]. J4, 2010, 40(5): 1121-1127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖长来,张力春,方 樟,贾 涛. 洮儿河扇形地地表水与地下水资源的转化关系[J]. J4, 2006, 36(02): 234 -0239 .
[2] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[3] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[4] 霍秋立,汪振英,李敏,付丽,冯大晨. 海拉尔盆地贝尔凹陷油源及油气运移研究[J]. J4, 2006, 36(03): 377 -383 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[8] 赵 峰,范海峰,田竹君,王志刚. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. J4, 2005, 35(05): 661 -666 .
[9] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480 -485 .
[10] 高志前,樊太亮,李 岩,刘武宏,陈玉林. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. J4, 2006, 36(04): 549 -556 .