吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1427-1440.doi: 10.13278/j.cnki.jjuese.20210068

• 岩土防灾与减灾 • 上一篇    下一篇

环境因素对兴-贝型多年冻土分布与发育的影响

崔赢1, 沈宇鹏1, 张中琼2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 中国科学院西北生态环境资源研究院, 兰州 730000
  • 收稿日期:2021-03-10 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 沈宇鹏(1977-),男,教授,博士生导师,主要从事寒区路基工程方面的教学和科研工作,E-mail:ypshen@bjtu.edu.cn E-mail:ypshen@bjtu.edu.cn
  • 作者简介:崔赢(1999-),女,硕士研究生,主要从事寒区道路与铁道工程方面的研究,E-mail:20121170@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41771074,41772330,42172291);冻土工程国家重点实验室开放基金(SKLFSE201808);北京市自然科学基金项目(8212014)

Influence of Environmental Factors on Distribution and Development of Xing'an-Baikal Permafrost

Cui Ying1, Shen Yupeng1, Zhang Zhongqiong2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Scicence, Lanzhou 730000, China
  • Received:2021-03-10 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (41771074,41772330,42172291), the Open Fund of State Key Laboratory of Frozen Soils Engineering (SKLFSE201808) and the Natural Science Foundation of Beijing (8212014)

摘要: 兴安岭-贝加尔(兴-贝)型多年冻土处于欧亚大陆高纬度多年冻土南缘,对气候变化和人类活动较为敏感。为了研究多年冻土变化规律以及预测其未来变化趋势,从环境因素对多年冻土的影响以及多年冻土与环境的相互作用两个方面出发,围绕地带性因素(纬度、高度、经度)和非地带因素(气温、植被、降水、积雪等)两大类环境因素的变化对多年冻土分布与发育的影响,分析了兴-贝型多年冻土的变化和发展趋势,总结认为:气温、植被、降水、积雪等环境因素共同作用,改变了土层水热状况,促使区域内大范围多年冻土经历了显著退化;退化程度存在区域差异,多年冻土南界附近退化程度最为显著。基于兴-贝型多年冻土的特殊性,提出了建立冻土和寒区环境监测机制并及时采取适应性和整治性措施保护和修复区域环境的建议。

关键词: 气候变化, 环境因素, 兴安岭-贝加尔型多年冻土, 分布与发育

Abstract: The Xing'an-Baikal type permafrost, as the southern boundary of the high-latitude permafrost in Eurasia, is more sensitive to climate change and human activities. It is of positive significance to expatiate on the change of permafrost and predict the future development through the study of the interaction between permafrost and environment. In this study,the authors expounded the influence of zonal factors (latitude, altitude, longitude) and non-zonal factors (temperature, vegetation, precipitation, snow cover, etc.) on the distribution and development of permafrost, and analyzed the development trend of the Xing'an-Baikal type permafrost. The environmental factors such as air temperature, vegetation, precipitation, snow cover, have jointly changed the hydrothermal condition of the soil layer, leading to significant degradation of permafrost in a large area of the region. There are regional differences in the degree of degradation, which is the most significant near the southern boundary. Based on the particularity of the Xing'an-Baikal permafrost, the authors propose some suggestions for the study of Xing'an-Beikal type permafrost, such as the establishment of permafrost and cold region environmental monitoring mechanism in permafrost and cold regions, and the timely adaptive and remedial measures to protect and repair the regional environment.

Key words: climate change, environmental factors, Xing'an-Baikal permafrost, distribution and development

中图分类号: 

  • P59
[1] 周幼吾, 郭东信, 邱国庆, 等.中国冻土[M]. 北京:科学出版社, 2000. Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Permafrost in China[M]. Beijing:Science Press, 2000.
[2] 沈永平, 王国亚.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068-1076. Shen Yongping, Wang Guoya. Key Findings and Assessment Results of IPCC WGI Fifth Assessment Report[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1068-1076.
[3] 程培峰, 王锐, 韩春鹏.高纬度多年冻土区路基工后温度变化规律研究[J]. 公路工程, 2017, 42(5):12-17. Cheng Peifeng, Wang Rui, Han Chunpeng. Study on the Permafrost Roadbed the Temperature Change Rule After Constructed at the High Altitude[J]. Highway Engineering, 2017, 42(5):12-17.
[4] 吴青柏, 朱元林, 施斌.工程活动下的冻土环境研究[J]. 冰川冻土, 2001, 23(2):200-207. Wu Qingbai, Zhu Yuanlin, Shi Bin. Study of Frozen Soil Environment Relating to Engineering[J]. Journal of Glaciology and Geocryology, 2001, 23(2):200-207.
[5] 冯岩, 杨才, 林海涛, 等.冻土区天然气水合物研究现状与内蒙古多年冻土区地质条件概述[J]. 西部资源, 2015, 68(5):117-120. Feng Yan, Yang Cai, Lin Haitao, et al. Research Status of Natural Gas Hydrate in Permafrost and Geologic Condition in Permafrost of Inner Mongolia Permafrost Regions[J]. Western Resources, 2015, 68(5):117-120.
[6] 刘海苹, 丁琳, 杨扬, 等.路基高度对高纬度多年冻土区路基温度场的影响[J]. 黑龙江大学工程学报, 2017, 8(1):25-29. Liu Haiping, Ding Lin, Yang Yang, et al. Influence of Subgrade Height in Subgrade Temperature Field on High Latitude Permafrost Regions[J]. Journal of Engineering of Heilongjiang University, 2017, 8(1):25-29.
[7] 魏智, 金会军, 张建明, 等.气候变化条件下东北地区多年冻土变化预测[J]. 中国科学:地球科学, 2011, 41(1):74-84. Wei Zhi, Jin Huijun, Zhang Jianming, et al. Prediction of Permafrost Changes in Northeastern China Under a Changing Climate[J]. Scientia Sinica Terrae, 2011, 41(1):74-84.
[8] Yersho E D, Williams P J. General Geocryology[M]. Cambridge:Cambridge University Press, 2004.
[9] Briggs M A. Surface Geophysical Methods for Characterising Frozen Ground in Transitional Permafrost Landscapes[J]. Permafrost and Periglacial Processes, 2017.
[10] An B B, Liu Jingren. Characteristics of Permafrost in Baikal Basin[J]. Journal of Glaciology and Geocryology, 1990, 7(1):23-35.
[11] Enikeev F I. Peski Urotshistshe in the Charskaya Depression (Northern Transbaikalia)[J]. Geography & Natural Resources, 2014, 35(4):352-358.
[12] Nekrasov I A. Geocryological Conditions of the Transbaikalia and Prebaikalia[M]. Novosibirsk:Nauka Press, 1967.
[13] Trofimova I E, Shekhovtsov A I. Assessing the Thermal Regime of Soils in the Depressions of the Prebaikalia and Northern Transbaikalia[J]. Geography and Natural Resources, 2011, 32(4):363-369.
[14] Forkel M, Thonicke K, Beer C, et al. Permafrost as an Additional Driving Factor for the Extreme Fire Event in the Boreal Baikal Region in 2003[J]. Egu General Assembly, 2010, 4(7):4776-4785.
[15] An V V, Lyubomirov A S, Savel'eva L N. Geocryological Conditions of the Baikal-Stanovoi Part of the BAM Zone[M]. Novosibirsk:Nauka Press, 1984.
[16] Sergeev D O, Stanilovskaya J V, Perlshtein G Z, et al. Background Geocryological Monitoring in Northern Transbaikalia Region[J]. Earth's Cryosphere, 2016, 20(3):24-32.
[17] Shur Y, Jorgenson M T, Kanevskiy M Z. Permafrost Encyclopedia of Snow, Ice and Glaciers[M]. Berlin:Springer Netherlands, 2011.
[18] Zhang Z Q, Wu Q B, Hou M T, et al. Permafrost Change in Northeast China in the 1950s-2010s[J]. Advances in Climate Change Research, 2021, 12(1):18-28.
[19] Pissart A. Advances in Periglacial Geomorphology[J]. Zeitschrift fur Geomorphologie, Supplement-band, 1990, 79:119-131. doi:10.2307/635399.
[20] 晁华, 王当, 龚强, 等.东北地区冻土的时空变化特征[J]. 现代农业科技, 2019(18):144-147. Chao Hua, Wang Dang, Gong Qiang, et al. Temporal and Spatial Change Characteristics of Frozen Soil in Northeast China[J]. Modern Agricultural Science and Technology, 2019(18):144-147.
[21] 金会军, 于少鹏, 吕兰芝, 等.大小兴安岭多年冻土退化及其趋势初步评估[J]. 冰川冻土, 2006, 28(4):467-476. Jin Huijun, Yu Shaopeng, Lü Lanzhi, et al. Preliminary Assessment of the Degradation and Trend of Permafrost in Da Hinggan Mountains and Xiao Hinggan Mountains[J]. Journal of Glaciology and Geocryology, 2006, 28(4):467-476.
[22] 孙广友, 于少鹏, 王海霞.大小兴安岭多年冻土的主导成因及分布模式[J]. 地理科学, 2007, 27(1):68-74. Sun Guangyou, Yu Shaopeng, Wang Haixia. Causes, South Borderline and Subareas of Permafrost in Da Hinggan Mountains and Xiao Hinggan Mountains[J]. Scientia Geographical Sinica, 2007, 27(1):68-74.
[23] 程国栋, 王绍令.试论中国高海拔多年冻土带的划分[J]. 冰川冻土, 1982, 4(2):1-17. Cheng Guodong, Wang Shaoling. On the Zonation of High-Altitude Permafrost in China[J]. Journal of Glaciology and Geocryology, 1982, 4(2):1-17.
[24] 程国栋.局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J]. 中国科学:地球科学, 2003, 33(6):602-607. Cheng Guodong. The Impact of Local Factors on Permafrost Distribution and Its Inspiring for Design Qinghai-Tibet Railway[J]. Science in China:Series D, 2003, 33(6):602-607.
[25] 庞强强, 赵林, 李述训.局地因素对青藏公路沿线多年冻土区地温影响分析[J]. 冰川冻土, 2011, 33(2):349-356. Pang Qiangqiang, Zhao Lin, Li Shuxun. Influences of Local Factors on Ground Temperatures in Permafrost Regions Along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2011, 33(2):349-356.
[26] Zhou Y Z, Jia G S. Precipitation as a Control of Vegetation Phenology for Temperate Steppes in China[J]. Atmospheric and Oceanic Science Letters, 2016, 9(3):162-168.
[27] 梁敏.大兴安岭多年冻土区地温时空变化遥感研究[D]. 长春:吉林大学, 2016. Liang Min. Study of Remote Sensing About Surface Temperature Spatiotemporal Variability in Da Hinggan Mountains Permafrost Region, Northeast China[D]. Changchun:Jilin University, 2016.
[28] 陈珊珊, 臧淑英, 孙丽.东北多年冻土退化及环境效应研究现状与展望[J]. 冰川冻土, 2018, 40(2):298-306. Chen Shanshan, Zang Shuying, Sun Li. Permafrost Degradation in Northeast China and Its Environmental Effects:Present Situation and Prospect[J]. Journal of Glaciology and Geocryology, 2018, 40(2):298-306.
[29] Chadburn S E. An Observation-Based Constraint on Permafrost Loss as a Function of Globalwarming[J]. Nat Clim Change, 2017, 7(5):340-344.
[30] Schuur E A G. Climate Change and the Permafrost Carbon Feedback[J]. Nature, 2015, 520:171-179.
[31] Biskaborn B K, Smith S L, Noetzli J. Permafrost is Warming at a Global Scale[J]. Nat Commun, 2019, 264(10):68-74.
[32] Huang J, Zhang X, Zhang Q, et al. Recently Amplified Arctic Warming has Contributed to a Continual Global Warming Trend[J]. Nat Clim Change, 2017, 7(12):875-879.
[33] Guo D, Wang H. CMIP5 Permafrost Degradation Projection:A Comparison Among Different Regions[J]. J Geophys Res, 2006, 121(9):4499-4517.
[34] 何瑞霞, 金会军, 吕兰芝, 等.东北北部冻土退化与寒区生态环境变化[J]. 冰川冻土, 2009, 31(3):525-531. He Ruixia, Jin Huijun, Lü Lanzhi, et al. Recent Changes of Permafrost and Cold Regions Environments in the Northern Part of Northeastern China[J]. Journal of Glaciology and Geocryology, 2009, 31(3):525-531.
[35] Chudinova S M, Frauenfeld O W, Barry R G, et al. Relationship Between Air and Soil Temperature Trends and Periodicities in the Permafrost Regions of Russia[J]. J Geophys Res, 2006, 111:342-357.
[36] Sharkhuu A, Sharkhuu N, Etzelmüller B, et al. Permafrost Monitoring in the Hovsgol Mountain Region, Mongolia[J]. J Geophys Res, 2007, 112:2-6.
[37] Anisimov O, Reneva S. Permafrost and Changing Climate:The Russian Perspective[J]. Ambio:A Journal of the Human Environment, 2006, 35(4):169-175.
[38] 王宁练, 刘时银, 吴青柏, 等. 北半球冰冻圈变化及其对气候环境的影响[J]. 中国基础科学, 2015, 17(2):9-14. Wang Ninglian, Liu Shiyin, Wu Qingbai, et al. Recent Progress in the Study of the Change of Cryo-Sphere in the Northern Hemisphere and Its Impacts on Climate and Environment[J]. China Basic Science, 2015, 17(2):9-14.
[39] 巴音德乐黑.内蒙古大兴安岭多年冻土退化趋势及土壤湿度响应研究[D].呼和浩特:内蒙古农业大学, 2019. Bayinde Lehei. Study on the Permafrost Degradation Trend and Soil Moisture Response in the Greater Hinggan Mountains, Inner Mongolia[D]. Huhehaote:Inner Mongolia Agricultural University, 2019.
[40] 杨建平, 杨岁桥, 李曼, 等.中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6):1436-1445. Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of Frozen Ground to Climate Change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1436-1445.
[41] Gavrilova M K. Climate and Permafrost[J]. Permafrost Periglac Process, 1993, 4(2):99-111.
[42] 王澄海, 靳双龙, 施红霞.未来50 a中国地区冻土面积分布与变化[J]. 冰川冻土, 2014, 36(1):1-8. Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area Change of the Frozen Ground in China in the Next 50 Years[J]. Journal of Glaciology and Geocryology, 2014, 36(1):1-8.
[43] 高春香, 苏立娟, 宋进华, 等.内蒙古东北部冻土分布与地温关系[J]. 内蒙古气象, 2004(1):19-22. Gao Chunxiang, Su Lijuan, Song Jinhua, et al. The Relationship Between the Distribution of Frozen Soil and Ground Temperature in Northeastern Inner Mongolia[J]. Meteorology Journal of Inner Mongolia, 2004(1):19-22.
[44] 孔莹, 王澄海.全球升温1.5℃时北半球多年冻土及雪水当量的响应及其变化[J]. 气候变化研究进展, 2017, 13(4):316-326. Kong Ying, Wang Chenghai. Responses and Changes in the Permafrost and Snow Water Equivalent in the Northern Hemisphere Under a Scenario of 1.5℃ Warming[J]. Advances in Climate Change, 2017, 13(4):316-326.
[45] Farbrot H, Etzelmüller B, Schuler T V, et al. Thermal Characteristics and Impact of Climate Changeon Mountain Permafrost in Iceland[J]. J Geophys Res, 2007, 112:90-112.
[46] Alexander L V. Global Observed Changesin Daily Climate Extremes of Temperature and Precipitation[J]. Journal of Geophysical Research, 2006, 111(22):109-131.
[47] 邵春, 沈永平, 张姣. 气候变化对寒区水循环的影响研究进展[J]. 冰川冻土, 2008, 30(1):72-80. Shao Chun, Shen Yongping, Zhang Jiao. Recently Progress in Climate Change Impact on Water Cycles of Cold Regions[J]. Journal of Glaciology and Geocryology, 2008, 30(1):72-80.
[48] Slate A G, Lawrence, David M. Diagnosing Present and Future Permafrost from Climate Models[J]. Journal of Climate, 2013, 26(15):5608-5623.
[49] Subin Z M, Koven C D, Riley W J, et al. Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions[J]. Journal of Climate, 2013, 26(10):3139-3158.
[50] Boike J, Roth K, Overduin P P. Thermal and Hydrologic Dynamics of the Active Layer at a Continuous Permafrost Site[J]. Water Resources Research, 1998, 34(3):355-363.
[51] 张明礼, 温智, 董建华, 等.降雨增加对多年冻土区铁路路基水热影响研究[J]. 岩石力学与工程学报, 2017, 36(10):2580-2590. Zhang Mingli, Wen Zhi, Dong Jianhua, et al. The Influence of Rainfall Increasing on Thermal-Moisture Dynamics of Railway Embankment in Cold Regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10):2580-2590.
[52] Hotaek P, Youngwook K, John S, et al. Widespread Permafrost Vulnerability and Soil Active Layer Increases over the High Northern Latitudes Inferred from Satellite Remote Sensing and Process Model Assessments[J]. Remote Sensing of Environment, 2015, 12(4):349-358.
[53] 蔡红艳, 韩冬锐, 杨林生, 等. 泛北极地区多年冻土活动层厚度演变[J]. 遥感学报, 2020, 24(8):1045-1059. Cai Hongyan, Han Dongrui, Yang Linsheng, et al. Spatiotemporal Change in Permafrost Active Layer Thickness in the Pan-Arctic Region[J]. Journal of Remote Sensing, 2020, 24(8):1045-1057.
[54] Wang G X, Liu G S, Li C J, et al. The Variability of Soil Thermal and Hydrological Dynamicswith Vegetation Cover in a Permafrost Region[J]. Agricultural and Forest Meteorology, 2012, 162:44-57.
[55] 常晓丽, 金会军, 王永平, 等.植被对多年冻土的影响研究进展[J]. 生态学报, 2012, 32(24):7981-7990. Chang Xiaoli, Jin Huijun, Wang Yongping, et al. Influences of Vegetation on Permafrost:A Review[J]. Acta Ecologica Sinica, 2012, 32(24):7981-7990.
[56] Zhang Z Q, Wu Q B, Xun Xueyi, et al. Spatial Distribution and Changes of Xing'an Permafrost in China over the Past Three Decades[J]. Quaternary International, 2019, 523(20):16-24.
[57] 刘章文, 陈仁升, 宋耀选. 寒区灌丛与积雪关系研究进展[J]. 冰川冻土, 2014, 36(6):1582-1590. Liu Zhangwen, Chen Rensheng, Song Yaoxuan. Advance in Study of the Relationship Between Shrub and Snow Cover in Cold Regions[J]. Journal of Glaciology and Geocryology, 2014, 36(6):1582-1590.
[58] 金会军, 王绍令, 吕兰芝, 等. 兴安岭多年冻土退化特征[J]. 地理科学, 2009, 6(2):223-228. Jin Huijun, Wang Shaoling, Lü Lanzhi, et al. Features of Permafrost Degradation in Hinggan Mountains, Northeastern China[J]. Scientia Geographica Sinica, 2009, 6(2):223-228.
[59] Minke M, Donner N, Karpov N, et al. Patterns in Vegetation Composition, Surface Height and Thaw Depth in Polygon Mires in the Yakutian Arctic:A Microtopographical Characterisationof the Active Layer[J]. Permafrost and Periglacial Processes, 2009, 20(4):357-368.
[60] Soudzilovskaia N A, Bodegom P M, Cornelissen J H. Dominant Bryophyte Control over High-Latitude Soil Temperature Fluctuations Predicted by Heat Transfer Traits, Fieldmoisture Regime and Laws of Thermal Insulation[J]. Functional Ecology, 2013, 27(6):1442-1454.
[61] 武海涛, 杨萌尧, 于凤琴, 等.大兴安岭的冻土沼泽[J]. 森林与人类, 2018(12):40-45. Wu Haitao, Yang Mengyao, Yu Fengqin, et al. Permafrost Swamps in the Greater Xing'an Mountains[J]. Forest and Humankind, 2018(12):40-45.
[62] 何瑞霞, 金会军, 王绍令, 等. 中俄原油管道沿线多年冻土环境评价方法探讨[J]. 冰川冻土, 2011, 33(5):1098-1105. He Ruixia, Jin Huijun, Wang Shaoling, et al. Discussion About Assessment Method of Permafrost Environment Along China-Russia Crude Oil Pipeline[J]. Journal of Glaciology and Geocryology, 2011, 33(5):1098-1105.
[63] 张艳, 吴青柏, 刘建平.小兴安岭地区黑河-北安段多年冻土分布特征[J]. 冰川冻土, 2001, 23(3):312-317. Zhang Yan, Wu Qingbai, Liu Jianping. Distribution Characteristics of the Permafrost in the Section from Heihe to Bei'an in the Xiao Hinggan Mountains[J]. Journal of Glaciology and Geocryology, 2001, 23(3):312-317.
[64] 曹庆锋.牙克石市图里河地区冻土变化分析[J]. 农家参谋, 2019(17):23-25. Cao Qingfeng. Analysis of Permafrost Changes in the Tulihe Area of Yakeshi City[J]. The Farmers Consultant, 2019(17):23-25.
[65] 杨永鹏, 程东幸, 伏慧霞.东北大兴安岭多年冻土区工程地质特征及评价[J]. 工程地质学报, 2008, 32(5):657-662. Yang Yongpeng, Cheng Dongxing, Fu Huixia. Engineering Geological Characteristics and Evaluations of Permafrost in Da Xing'an Mountains[J]. Journal of Engineering Geology, 2008, 32(5):657-662.
[66] 杨扬, 刘海苹, 王志刚, 等.大兴安岭地区多年冻土活动层变化规律研究[J]. 黑龙江工程学院学报, 2017, 31(1):15-18. Yang Yang, Liu Haiping, Wang Zhigang, et al. On Change Laws of Permafrost Active Layer in Daxing'anling Region[J]. Journal of Heilongjiang Institute of Technology, 2017, 31(1):15-18.
[67] 彭小清.北半球季节冻土时空变化特征及其对气候变化的响应[D]. 兰州:兰州大学, 2017. Peng Xiaoqing. Spatial Temporal Variations of Seasonally Frozen Ground and Its Response to Climate Change in the Northern Hemisphere[D]. Lanzhou:Lanzhou University, 2017.
[68] 孙广友. 试论沼泽与冻土的共生机理:以中国大小兴安岭地区为例[J]. 冰川冻土, 2000, 22(4):309-316. Sun Guangyou. Discussion on the Symbiotic Mechanisms of Swamp with Permafrost:Taking China's Da Hinggan Mountains and Xiao Hinggan Mountains as Examples[J]. Journal of Glaciology and Geocryology, 2000, 22(4):309-316.
[69] Sun G Y, Jin H J, Yu S P. The Symbiosis Models of Marshes and Pemafrost:A Case Study in Daxing'an and Xiaoxing'an Mountain Range[J]. Wetland Science, 2008, 6(4):479-485.
[70] Chang X L, Jin H J, Zhang Y L, et al. Thermal Impacts of Boreal Forest Vegetation on Active Layer and Permafrost Soils in Northern Da-Xiao Xing'an (Hinggan) Mountains, Northeast China[J]. Arctic Antarctic and Alpine Research, 2015, 47(2):267-279.
[71] 符进, 李俊, 唐晓星.高纬度多年冻土区路基温度场规律研究[J]. 中外公路, 2014, 34(2):46-51. Fu Jin, Li Jun, Tang Xiaoxing. Research on the Law of Subgrade Temperature Field in High Latitude Permafrost Regions[J]. Journal of China & Foreign Highway, 2014, 34(2):46-51.
[72] Yuan F H, Liu J Z, Zuo Y J, et al. Rising Vegetation Activity Dominates Growing Water Use Efficiency in the Asian Permafrost Region from 1900 to 2100[J]. Science of the Total Environment, 2020, 16(10):87-95.
[73] 张洪伟.内蒙古高纬度深季节冻土区公路冻胀变形及水热过程监测分析[J]. 冰川冻土, 2019, 41(3):1-15. Zhang Hongwei. Monitoring and Analysis of Frost Heave Deformation and Hydrothermal Process of Highways in High-Latitude Deep Seasonal Frozen Soil Areas in Inner Mongolia[J]. Journal of Glaciology and Geocryology, 2019, 41(3):1-15.
[74] 张莲海, 马巍, 杨成松, 等.土在冻结及融化过程中的热力学研究现状与展望[J]. 冰川冻土, 2013, 35(6):1505-1518. Zhang Lianhai, Ma Wei, Yang Chengsong, et al. A Review and Prospect of the Thermo Dynamics of Soils Subjected to Freezing and Thawing[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1505-1518.
[75] Barry R G. Summary Report on the First Session of the WCRP Climateand Cryosphere[J]. WCRP Informal Report, 1998(11):56-62.
[76] 李述训, 南卓铜, 赵林.冻融作用对系统与环境间能量交换的影响[J]. 冰川冻土, 2002, 24(2):109-115. Li Shuxun, Nan Zhuotong, Zhao Lin. Impact of Freezing and Thawing on Energy Exchange Between the System and Environment[J]. Journal of Glaciology and Geocryology, 2002, 24(2):109-115.
[77] Jin X Y, Jin H J, Iwahana G, et al. Impacts of Climate-Induced Permafrost Degradation on Vegetation:A Review[J]. Advances in Climate Change Research, 2020, 12(1):29-47.
[78] 张戈丽, 徐兴良, 周才平, 等.近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J]. 地理学报, 2011, 66(1):47-58. Zhang Geli, Xu Xingliang, Zhou Caiping, et al. Responses of Vegetation Changes to Climatic Variations in Hulun Buir Grassland in Past 30 Years[J]. Acta Geographica Sinica, 2011, 66(1):47-58.
[79] Jin H, Yu Q, Lu L, et al. Degradation of Permafrost in the Xing'anling Mountains, Northeastern China[J]. Permafrost and Periglacial Processes, 2007, 18(3):245-258.
[80] Zhang T. Influence of the Seasonal Snow Cover on the Ground Thermal Regime:An Overview[J]. Rev Geophys, 2005, 43(4):1209-1232.
[81] Ling F, Zhang T. Impact of the Timing and Duration of Seasonal Snow Cover on the Activelayer and Permafrost in the Alaskan Arctic[J]. Permafrost Periglac Process, 2003(14):141-150.
[82] Zhang T, Barry R G, Knowles K, et al. Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere[C]//Proceedings of the Eighth International Conference on Permafrost. Switzerland:International Permafrost Association, 2003.
[83] Caldwell P V, Sun G, McNulty S G, et al. Impacts of Impervious Cover, Water Withdrawals, and Climate Change on River Flows in the Conterminous US[J]. Hydrology and Earth System Sciences, 2012, 9(8):2839-2857.
[84] 李弘毅, 王建. 积雪水文模拟中的关键问题及其研究进展[J]. 冰川冻土, 2013, 35(2):430-437. Li Hongyi, Wang Jian. Key Research Topics and Their Advances on Modeling Snow Hydrological Processes[J]. Journal of Glaciology and Geocryology, 2013, 35(2):430-437.
[85] 曹二涛, 张弛, 张华.城市地质环境安全性评价指标体系研究[J]. 铁道勘察, 2020, 46(4):59-64. Cao Ertao, Zhang Chi, Zhang Hua. Study on Safety Evaluation Index System of Urban Geological Environment[J]. Railway Investigation and Surveying, 2020, 46(4):59-64.
[86] 李晓英, 金会军, 何瑞霞, 等.多年冻土区森林大火对生态服务功能的影响研究[J]. 气候变化研究进展, 2020, 16(5):545-554. Li Xiaoying, Jin Huijun, He Ruixia, et al. Effects of Forest Fires on Ecological Service in Permafrost Regions[J]. Advances in Climate Change Research, 2020, 16(5):545-554.
[87] Li X Y, Jin H J, Wang H W, et al. Influences of Forest Fires on the Permafrost Environment:A Review[J]. Advances in Climate Change Research, 2021, 12(1):48-65.
[88] He R X, Jin H J, Lanzhi L, et al. Cold-Region Environments Along the China-Russia Crude Oil Pipeline and Their Management[J]. Cold and Arid Regions Science, 2010, 2(2):129-136.
[89] 王凤艳, 王梓铭, 王明常, 等. 中蒙俄经济走廊沿海与内陆NDVI分布特征[J]. 吉林大学学报(地球科学版), 2021, 51(3):864-876. Wang Fengyan, Wang Ziming, Wang Mingchang, et al. Distribution Characteristics of NDVI in Coastal and Inland Areas for China-Mongolia-Russia Economic Corrido[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3):864-876.
[90] 石梁宏, 李双洋. 寒区渠基黏土热参数最优概率分布[J]. 吉林大学学报(地球科学版), 2021, 51(2):473-482. Shi Lianghong, Li Shuangyang. Optimal Probability Distribution of Thermal Conductivity Parameters of Canal Foundation Clay in Cold Regions[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(2):473-482.
[1] 闫佰忠, 孙丰博, 李晓萌, 王玉清, 范成博, 陈佳琦. 气候变化与人类活动对石家庄市藁城区地下水位埋深的影响分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 854-863.
[2] 王利花, 周云轩. 大通站水沙关系演变驱动因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 226-233.
[3] 李贶家, 顾延生, 刘红叶. 豫北平原全新世孢粉记录气候变化与古文化演替[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1449-1457.
[4] 于磊,杨井泉,徐丽梅,胡广鑫,胡红,张涛,高明杰,李子轩. 气候变化背景下海河流域干旱特征及趋势[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1615-1624.
[5] 谭志海,黄春长,庞奖励,丁敏. 渭河流域全新世以来野火历史与人类土地利用的炭屑记录[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1297-1306.
[6] 高文,贾大成,李桐林,王泽光,姜琦刚,刘春茹,张潇,姜涛. 松嫩平原东部中、晚更新世地层界限:光释光年龄及元素变化[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1889-1894.
[7] 刘维明,杨胜利,方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报(地球科学版), 2013, 43(3): 974-982.
[8] 崔瀚文,姜琦刚,邢宇,徐驰,林楠. 32 a来气候扰动下中国沙质荒漠化动态变化[J]. 吉林大学学报(地球科学版), 2013, 43(2): 582-591.
[9] 黄昌庆, Liu Kambiu, 冯兆东, 冉敏, 杨奇丽, 张晓森. 哈萨克斯坦Tramplin剖面孢粉记录的MIS3a环境变化[J]. 吉林大学学报(地球科学版), 2013, 43(1): 149-154.
[10] 李秉成. 10 000 aB.P.关中蓝田的植被和气候[J]. J4, 2010, 40(1): 109-113.
[11] 邵兆刚, 孟宪刚, 朱大岗, 杨朝斌, 雷伟志, 王津, 韩建恩, 余佳, 孟庆伟, 吕荣平, 钱程. 从能量输入角度讨论高原隆升的环境效应[J]. J4, 2009, 39(3): 514-520.
[12] 张继承,姜琦刚,李远华,王利花. 近50年来柴达木盆地湿地变迁及其气候背景分析[J]. J4, 2007, 37(4): 752-0758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215 -0220 .
[2] 杨俊鹏,胡 克,刘玉英. 吉林西部盐碱化土壤碳酸盐的碳稳定同位素特征[J]. J4, 2006, 36(02): 245 -0249 .
[3] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[4] 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516 -520 .
[5] 汤洁,吕川,李昭阳,王晨野,张景成,李海毅. 基于灰色聚类与3S耦合方法的生态环境质量变化趋势研究--以吉林省大安市为例[J]. J4, 2008, 38(6): 1037 -1043 .
[6] 束龙仓,李 伟. 北塘水库库底地层渗透系数的随机特性分析[J]. J4, 2007, 37(2): 216 -0220 .
[7] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266 -270 .
[8] 苏小四,林学钰,董维红,万玉玉. 反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J]. J4, 2007, 37(2): 271 -277 .
[9] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[10] 杨春梅, 李洪奇,陆大卫,张方礼,高 原,邵英超. 不同驱替方式下岩石电阻率与饱和度的关系[J]. J4, 2005, 35(05): 667 -671 .