吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (3): 725-736.doi: 10.13278/j.cnki.jjuese.20210256

• 第十五届中国国际地球电磁学术研讨会专栏 • 上一篇    下一篇

基于支持向量机的可控源电磁数据智能识别方法

李广1,2,丁迪1,石福升1,邓居智1,肖晓2,陈辉1,何柱石1,桂团福1   

  1. 1.江西省防震减灾与工程地质灾害探测工程研究中心(东华理工大学),南昌330013

    2.有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),长沙410083

  • 出版日期:2022-05-26 发布日期:2024-01-02
  • 基金资助:

    国家自然科学基金项目(41904076, 41830107, 42074087, 42130811);中国博士后科学基金项目(2021M692987);江西省防震减灾与工程地质灾害探测工程研究中心开放基金(SDGD202008);有色金属成矿预测与地质环境监测教育部重点实验室开放基金(2021YSJS02)


Intelligent Recognition of Controlled-Source Electromagnetic Data by Support Vector Machine

Li Guang1, 2, Ding Di1, Shi Fusheng1, Deng Juzhi1, Xiao Xiao2, Chen Hui1, He Zhushi1, Gui Tuanfu1   

  1. 1. Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (East China University of Technology), Nanchang 330013,China

    2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University), Ministry of Education, Changsha 410083, China

  • Online:2022-05-26 Published:2024-01-02
  • Supported by:
    Supported  by the National Natural Science Foundation of China (41904076, 41830107, 42074087, 42130811),the China Postdoctoral Science Foundation (2021M692987),the Open Fund from Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (SDGD202008) and the Open Fund from Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education (2021YSJS02)

摘要: 可控源电磁(CSEM)数据常常受到强人文噪声的污染,极大地影响了可控源电磁勘探的分辨率。为提高CSEM数据质量,本文提出一种基于支持向量机(SVM)的CSEM数据智能识别方法(CEEMD-SVM方法),以代替传统的基于人工设定阈值的数据挑选方法。首先,通过互补集合经验模态分解(CEEMD)算法去除基线漂移噪声;然后,利用SVM对去除基线漂移后的数据进行智能识别,挑选出高质量信号。为验证该方法的有效性,首先进行了合成数据分析,然后将所提方法应用于广域电磁实测数据的处理。结果表明:SVM的平均识别准确率在92.00%以上;经过CEEMD-SVM方法处理后,视电阻率由处理前的跳变形态变为连续光滑状态。

Abstract:

Controlled-source electromagnetic method (CSEM) signals are often contaminated by strong human noise, and the resolution of CSEM exploration is greatly affected. In order to improve the quality of CSEM data, in this paper, a new intelligent data processing method is proposed based on support vector machine (SVM) algorithm. Firstly, the baseline-drift noise is removed by complementary ensemble empirical mode decomposition (CEEMD) algorithm, and then the data is classified by SVM to select high-quality signals. In order to validate the proposed method, a targeted experiment was conducted using simulated noise and measured high-quality data, and then the method was applied to the measured data by the wide-field electromagnetic method (WFEM). The results show that the recognition accuracy of SVM is greater than 92.00%. After the treatment of the proposed method, the apparent resistivity changes from jumping shape to continuous and smooth.


Key words: wide-field electromagnetic method (WFEM), complementary ensemble empirical mode decomposition (CEEMD), signal-noise identification, support vector machine (SVM), controlled-source electromagnetic method (CSEM)

中图分类号: 

  • P319
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!