吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (6): 2071-2080.doi: 10.13278/j.cnki.jjuese.20210375

• 地球探测与信息技术 • 上一篇    下一篇

基于LSTM算法的FY-3B卫星春玉米叶面积指数反演

张霞1,陶诗语1, 2,张茂1   

  1. 1.中国科学院空天信息创新研究院,北京100101
    2.中国科学院大学,北京100049
  • 收稿日期:2021-11-26 出版日期:2022-11-26 发布日期:2022-12-27
  • 基金资助:
    国家重点研发计划项目(2017YFC1502802);中国科学院战略性先导科技专项(XDA28080502);风云卫星应用先行计划专项(FY-APP-2021.0302)

FY-3B Satellite Spring Maize Leaf Area Index Inversion Based on LSTM Algorithm

Zhang Xia1, Tao Shiyu1, 2, Zhang Mao1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China 
  • Received:2021-11-26 Online:2022-11-26 Published:2022-12-27
  • Supported by:
    the National Key R&D Program of China (2017YFC1502802), the Chinese Academy of Sciences Strategic Leading Science and Technology Project (XDA28080502) and the Special Project of Feng Yun Satellite Application Advance Program (FY-APP-2021.0302)

摘要: FY-3B卫星具有观测频次高、成像范围广等特点,可为玉米叶面积指数(leaf area index, LAI)反演研究提供长时序观测数据。LSTM((long short-term memory)算法具有在多时相数据中提取时间特征的能力,能解决光谱数据与LAI之间复杂的非线性问题。本文基于辽宁省锦州市近地实测春玉米LAI和反射率光谱数据,利用光谱响应函数模拟FY-3B多光谱波段,结合与春玉米LAI相关性较高的28种植被指数,应用LSTM算法建立不同隐藏层的预测模型,并与偏最小二乘法(partial least-squares regression, PLSR)建立的模型进行预测精度对比。结果表明:隐藏层的层数对LSTM模型的拟合效果有较大影响,三层LSTM模型将LAI估算精度的决定系数由0.818 3(单层LSTM)、0.780 0(PLSR)提升至0.869 2;对应地,将均方根误差由0.509 1、0.490 6降低至0.372 6,模型精度提升明显。

关键词: 春玉米, 叶面积指数, FY-3B, LSTM

Abstract: The FY-3B satellite has the characteristics of a high frequency of observation and wide imaging range, which can provide long-term observation data for maize leaf area index (LAI) inversion research. Long short-term memory (LSTM) algorithm has the ability to extract temporal features from multi-period data and solve complex nonlinear problems between spectral data and LAI. The study was conducted based on   LAI and reflectance spectrum data of spring maize in Jinzhou City,Liaoning Province  measured  near the ground. To construct the LAI inversion model, the spectral response functions were used to simulate the FY-3B multi-spectral band data combined with 28 vegetation indices highly correlated with spring maize LAI. The inversion models were conducted using LSTM of different hidden layers, and the accuracies of the LSTM models were compared with the accuracy of the partial least-squares regression (PLSR) model. The results showed that the number of hidden layers greatly influences the fitting ability of the LSTM model. The three-layer LSTM model increased the LAI estimation accuracy R2 from 0.818 3 (single-layer LSTM), 0.780 0 (PLSR) to 0.869 2; correspondingly reducing the RMSE from 0.509 1,0.490 6 to 0.372 6. In short, the accuracy of the model was significantly improved.

Key words: spring maize, leaf area index, FY-3B, LSTM

中图分类号: 

  • TP751
[1] 秦喜文, 王强进, 王新民, 郭佳静, 初晓. 基于VMD和LSTM方法的北京市PM2.5短期预测[J]. 吉林大学学报(地球科学版), 2022, 52(1): 214-.
[2] 闫佰忠, 孙剑, 王昕洲, 韩娜, 刘博. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020, 50(1): 208-216.
[3] 王明常,牛雪峰,陈圣波,王亚楠,汪自军. 基于DART模型的PROBA/CHRIS数据叶面积指数反演[J]. 吉林大学学报(地球科学版), 2013, 43(3): 1033-1039.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .