吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (1): 88-105.doi: 10.13278/j.cnki.jjuese.20220052

• 地质与资源 • 上一篇    下一篇

中天山地块沙垄铁建造矿石矿物原位微量元素特征及其意义

张凯1, 雷如雄1,2, 孙晓辉1,2 , 吴昌志1,2   

  1. 1.长安大学地球科学与资源学院,西安710054

    2.西部矿产资源与地质工程教育部重点实验室,西安710054

  • 收稿日期:2022-03-02 出版日期:2023-01-26 发布日期:2023-04-04

Characteristics and Significance of In-Situ Trace Elements of Ore Minerals from the Shalong Iron Formation in the Central Tianshan Block, NW China

Zhang Kai1, Lei Ruxiong1,2, Sun Xiaohui1,2, Wu Changzhi1,2   

  1. 1. School of Earth Science and Resources, Chang’an University, Xi’an 710054, China

    2. Key Laboratory of Western China’s Mineral Resources and Geological Engineering of Ministry of Education, Xi’an 710054, China


  • Received:2022-03-02 Online:2023-01-26 Published:2023-04-04

摘要: 位于中天山地块的沙垄铁建造是新近识别出的新元古界铁建造之一。前人已经对该铁建造的矿床特征、形成时代和构造背景进行了研究,并通过矿石的全岩元素地球化学和铁同位素分析,探讨了其矿床成因和沉积环境。但是,目前缺乏针对沙垄铁建造矿石矿物的矿物学和微区地球化学分析等的研究,制约了对其铁矿物形成过程和形成环境的深入认识。本文以沙垄铁建造中代表性铁矿石的磁铁矿和赤铁矿为主要研究对象,在详细的矿相学研究基础上,利用飞秒激光剥蚀电感耦合等离子体质谱(fs-LA-ICP-MS)开展磁铁矿和赤铁矿的原位地球化学分析,进一步揭示磁铁矿和赤铁矿形成的过程和环境。沙垄铁建造的赤铁矿主要呈半自形微细粒板状,并且顺层定向分布,磁铁矿主要呈中粗粒状变斑晶产出。原位地球化学分析结果表明:磁铁矿总体具有较高质量分数的Si、Ca、Mn和较低质量分数的Ni、Cu、Zn,不同样品的磁铁矿V质量分数相对一致,Ti质量分数变化较大;赤铁矿相对于磁铁矿具有较高的Si、Ca、Ti、Cr质量分数和较低的Mn、Ni、Zn质量分数。磁铁矿的稀土总量较低(w(ΣREY)=1.49×10-6~51.16×10-6,平均值为12.15×10-6),具有轻稀土相对重稀土亏损、Eu异常不明显和正La异常的特征,不同样品的磁铁矿和赤铁矿具有与全岩的稀土元素一致的配分模式,表明了铁建造中磁铁矿和赤铁矿是稀土元素的主要载体,磁铁矿和赤铁矿微量元素特征可以为揭示铁建造的成矿物质来源和形成时的氧化还原条件提供新的依据。结合前人研究,本文认为沙垄铁建造中的磁铁矿变斑晶是赤铁矿重结晶作用的产物,磁铁矿的稀土元素特征指示沙垄铁建造具有低温热液和海水混合的成矿物质来源,而Ce异常的缺乏和质量分数相对一致的V、Cr,说明铁建造形成于相对缺氧的环境,并且在形成过程中氧逸度的变化较小。

关键词: 磁铁矿, 赤铁矿, 微量元素, fs-LA-ICP-MS, 铁建造, 中天山地块

Abstract:

The Shalong iron formation located in the Central Tianshan block is one of the newly discovered Neoproterozoic iron formations. Previous studies have reported the deposit characteristics, formation age and tectonic settings of the Shalong iron formation, and discussed the genesis and sedimentary environment of the deposit on the base of the whole-rock element geochemistry and iron isotope analysis of the ore. However, there is little attention paid to micro-geochemical analysis of ore minerals in Shalong iron formation, which restricts the in-depth understanding of the iron mineral formation process and formation environment. This study focuses on the magnetite and hematite of the representative iron ores from the Shalong iron formation. Based on the detailed mineralogical study, in-situ geochemical analysis of magnetite and hematite using femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry (fs-LA-ICP-MS) was carried out, so as to further reveal the formation process and environment of magnetite and hematite. The hematite in the Shalong iron formation is mainly presented as subhedral micro-fine grained tabular texture, and distributed along the layer of rocks, the magnetite is presented as euhedral to subhedral granular. The results of the in-situ geochemical analysis show that magnetite has a high mass fraction of Si, Ca and Mn and a low mass fraction of Ni, Cu and Zn. The mass fraction of V  of magnetites from different samples  are relatively consistent, and the mass fractions of Ti vary greatly. Hematites have a higher mass fraction of Si, Ca, Ti,  Cr and a lower mass fraction of Mn, Ni and Zn than magnetites. The total rare earth elements in magnetite are low (w(ΣREY)=1.49×10-6-51.16×10-6, average 12.15×10-6), showing the characteristics of depletion in light REEs (LREEs) and enrichment in heavy REEs (HREEs), with no observed Eu anomalies and positive La anomalies. Magnetite and hematite in different samples have similar REE distribution patterns as those of the whole ore, indicating that magnetite and hematite in iron formation  are the main carriers of rare earth elements, and the trace element characteristics of magnetite and hematite can provide a new insight for revealing the source of ore-forming materials and redox conditions during the formation of iron formation. Our results, in conjunction with previous studies, suggest that the magnetite in the Shalong iron formation is the product of hematite recrystallization, and rare earth element characteristics of magnetites indicate that the Shalong iron formation has a source of mixed ore-forming materials of low-temperature hydrothermal solution and seawater, while the lack of Ce anomalies and the relatively consistent mass fraction of V and Cr indicate that the iron formation was formed in a relatively anoxic environment, and the changes in oxygen fugacity were small during the formation process.



 

Key words: magnetite, hematite, trace elements, fs-LA-ICP-MS, iron formation, Central Tianshan block

中图分类号: 

  • P57
[1] 单玄龙, 热西提·亚力坤, 刘 培, 陶文芳, 张 琴, 郝国丽, 李克成, 姚佳利. 珠江口盆地西江主洼珠琼运动的沉积响应及构造意义[J]. 吉林大学学报(地球科学版), 2023, 53(2): 329-.
[2] 李玉洁, 李成禄, 杨元江, 袁茂文, 李博文, 苏 航. 大兴安岭东北部多宝山矿集区二道坎银铅锌矿床磁铁矿地球化学特征[J]. 吉林大学学报(地球科学版), 2023, 53(2): 436-.
[3] 段雪鹏, 田永飞, 王宁, 韩学智, 王宗起, 于晓飞. 辽东地区大石湖沟铜矿化构造背景——来自闪长玢岩锆石成因的指示[J]. 吉林大学学报(地球科学版), 2023, 53(1): 140-160.
[4] 丁清峰, 吴睿哲, 张强, 周轩. 青海东昆仑洪水河铁矿床新元古代含铁建造铁同位素特征及其成因意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1497-1511.
[5] 于静文, 王志伟, 朱泰昌, 邢凯, 孟巍, 周建磊, 李艳广. 二连浩特北部石炭纪地壳演化过程——来自哈拉图庙群火山碎屑岩锆石U-Pb-Hf同位素的制约[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1153-.
[6] 曾志杰, 陈雷. 南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示[J]. 吉林大学学报(地球科学版), 2021, 51(3): 704-722.
[7] 康凯, 杜泽忠, 于晓飞, 李永胜, 吕鑫, 孙海瑞, 杜轶伦. 甘肃花牛山铅锌矿床闪锌矿LA-ICP-MS微量元素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1418-1432.
[8] 曹星星, 吴攀, 周少奇, 谢峰, 荣嵘. 酸性矿山排水影响的水库沉积物微量元素地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1112-1126.
[9] 龙天祥, 何小虎, 刘飞, 李宗勇, 王玉朝, 赵俊, 李云飞, 王长兵, 曹原. 长安金矿区碱性岩锆石U-Pb年代学、微量元素、Hf同位素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1607-1627.
[10] 叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(3): 734-750.
[11] 陈大. 扬子地台西缘铅锌矿床分布规律及矿源层探讨[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1365-1383.
[12] 戴朝成,郑荣才,任军平,朱如凯. 四川前陆盆地上三叠统须家河组物源区分析及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1085-1096.
[13] 曹锐, 木合塔尔·扎日, 陈斌, 李德威, 曹福根, 刘德民. 东天山板块缝合带石炭纪火山岩地球化学和Sr-Nd同位素特征及其大地构造意义[J]. J4, 2012, 42(2): 400-409.
[14] 叶霖, 杨玉龙, 高伟, 刘铁庚. 陕南铜厂铜矿床成矿物质来源探讨[J]. J4, 2012, 42(1): 92-103.
[15] 习宇飞, 刘天佑, 宋双, 肖金发, 姜敏, 杨海燕. 任意形状三度体磁场可视化人机交互反演[J]. J4, 2011, 41(1): 252-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!