吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (2): 633-646.doi: 10.13278/j.cnki.jjuese.20230035

• 地球探测与信息技术 • 上一篇    下一篇

基于正则化思想的tilt-Euler法在边缘深度反演中的应用

罗新刚1,2,王万银1,3,4   

  1. 1.长安大学重磁方法技术研究所/长安大学地质工程与测绘学院/西部矿产资源与地质工程教育部重点实验室(长安大学),

    西安710054

    2.中国地质调查局西安地质调查中心/西北地质科技创新中心,西安710119

    3.海洋油气勘探国家工程研究中心,北京100028

    4.中国科学院海洋地质与环境重点实验室,山东青岛266071

  • 出版日期:2024-03-26 发布日期:2024-04-09
  • 基金资助:

    中海石油有限公司科技项目(CCL2021RCPS0167KQN);中央高校基本科研业务费专项资金(300102261714)


Application of Tilt-Euler Method Based on Regularization  in Edge Depth Inversion

Luo Xingang1,2, Wang Wanyin1,3,4   


  1. 1. Institute of Gravity and Magnetic Technology,Chang’an University/ College of Geology Engineering and Geomatics,Chang’an

    University/  Key Laboratory of Western China’s Mineral Resources and Geological Engineering (Chang’an University),

    Ministry of Education, Xi’an 710054, China

    2. Xi’an Center of China Geological Survey/ Northwest China Center for Geoscience Innovation, Xi’an 710119, China

    3. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China

    4. Key Laboratory of Marine Geology and Environment, Chinese Academy of Science, Qingdao 266071, Shandong, China

  • Online:2024-03-26 Published:2024-04-09
  • Supported by:
    Supported by the Scientific and Technological Project of China National Offshore Oil Corporation Co., Ltd. (CCL2021RCPS0167KQN) and the Fundamental Research Funds for the Central Universities, CHD (300102261714)

摘要:

地质体边缘深度在重、磁位场数据半定量解释中起着至关重要的作用。由于重、磁异常及其各阶导数均满足欧拉齐次方程,tilt-Euler法在边缘深度反演方面备受青睐。然而,当重、磁异常的总水平导数或者总梯度模等于0时,倾斜角的一阶导数无法计算,导致倾斜角不能满足欧拉方程,tilt-Euler法无法使用。为了解决此问题,本文基于正则化思想,对倾斜角的一阶导数进行修改,使得重、磁异常的总水平导数或者总梯度模等于0时,倾斜角的一阶导数依然可以计算,修改后的倾斜角导数依然满足欧拉方程,称改进的方法为rtilt-Euler法;同时利用识别精度更高的归一化总水平导数垂向导数(NVDR-THDR)边缘识别方法对反演结果进行约束,剔除偏离边缘位置的坏点。理论模型试验结果表明,改进后的方法消除了重、磁异常总水平导数或者总梯度模很小或者等于0时,倾斜角导数无法计算以及反演结果不稳定的问题。将该方法应用到澳大利亚奥林匹克坝氧化铁铜金矿床边缘深度反演中,反演结果显示氧化铁铜金矿床边缘深度主要集中在0~100 m和100~200 m这两个深度段内,与沉积物剖面显示的矿床边缘深度0~200 m相符,证明了该方法的有效性。

关键词: 地质体边缘深度, 重磁位场, 正则化, rtilt-Euler, NVDR-THDR

Abstract:

The edge depth of geological bodies plays a critical role in the semi-quantitative interpretation of gravity and magnetic field data. Since gravity and magnetic anomalies and their derivatives of all orders satisfy the Euler homogeneous equation, the tilt-Euler method is favored for inversion of edge depth. However, it is found that when the total horizontal derivative or the total gradient mode of gravity or magnetic anomalies is equal to zero, the first-order derivative of the tilt angle cannot be calculated, resulting in the tilt angle cannot satisfy the Euler equation, and the tilt-Euler method cannot be used. In order to solve this problem, based on the regularization idea, we modified the first-order derivative of the tilt angle, so that the first-order derivative of the tilt angle can still be calculated when the total horizontal derivative or the total gradient mode of gravity or magnetic anomalies is equal to zero, and the modified derivatives of the tilt angle still satisfy the Euler equation. We call the improved method the rtilt-Euler method. At the same time, the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) with higher edge recognition accuracy was used to constrain the inversion results and eliminate the bad points deviating from the edge position. The results of the model test show that the improved method eliminates the problems that the tilt angle derivative cannot be calculated and the instability of the inversion restults when the total horizontal derivative or the total gradient mode of gravity or magnetic anomalies is zero or very small.   This method was applied to the edge depth inversion of iron oxide, copper-gold (IOCG) deposit of the Olympic Dam in Australia. The results show that the edge depth of the iron oxide, copper-gold deposit is mainly concentrated in the depth ranges of 0-100 m and 100-200   m, which is consistent with the edge depth of 0-200 m shown by the sedimentary profile, proving the effectiveness of the method.

Key words: edge depth of geological bodies, gravity and magnetic fields, regularization, rtilt-Euler, NVDR-THDR

中图分类号: 

  • P631
[1] 吴秋莹, 胡斌, 刘财, 高锐. 基于L1/2正则化的抛物线Radon变换多次波压制方法#br#[J]. 吉林大学学报(地球科学版), 2024, 54(1): 323-336.
[2] 杨夫杰, 杨海燕, 姜志海, 岳建华, 刘志新, 苏本玉, 张华, 李哲, 汪凌. 圆锥型场源瞬变电磁自适应正则化反演[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1328-.
[3] 冯进凯, 王庆宾, 黄炎, 范雕. 基于局部重力场建模的Tikhonov正则化点质量核径向基函数方法[J]. 吉林大学学报(地球科学版), 2019, 49(2): 569-577.
[4] 杜威, 许家姝, 吴燕冈, 郝梦成. 位场垂向高阶导数的Tikhonov正则化迭代法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 394-401.
[5] 翁爱华, 刘佳音, 贾定宇, 杨悦, 李建平, 李亚彬, 赵祥阳. 有限长导线源频率测深有限内存拟牛顿一维反演[J]. 吉林大学学报(地球科学版), 2017, 47(2): 597-605.
[6] 冉利民, 刘四新, 李玉喜, 李健伟. 影响跨孔雷达层析成像效果的几个因素[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1672-1680.
[7] 陶宏根, 商庆龙, 刘长伟, 汪宏年, 李舟波. 新型高分辨率自然伽马测井仪器的优化设计与资料处理技术[J]. J4, 2012, 42(4): 906-913.
[8] 聂鹏飞, 曾谦, 马海涛, 李月, 林红波. 消减地震勘探随机噪声:导数算子约束下的维纳滤波[J]. J4, 2010, 40(6): 1471-1478.
[9] 张文权,翁爱华. 地面核磁共振正则化反演方法研究[J]. J4, 2007, 37(4): 809-0813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .