吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (1): 20-37.doi: 10.13278/j.cnki.jjuese.20230314

• 原长春地质学院创建70周年纪念活动专栏 • 上一篇    下一篇

陆相坳陷湖盆细粒沉积岩岩相类型及成因:以松辽盆地晚白垩世青山口组为例

孟庆涛1,2,胡菲1,2,刘招君1,2,孙平昌1,2,柳蓉1,2   

  1. 1.吉林大学地球科学学院,长春 130061
    2.吉林省油页岩与共生能源矿产重点实验室,长春 130061
  • 收稿日期:2023-11-21 出版日期:2024-01-26 发布日期:2024-03-11
  • 通讯作者: 胡菲(1986—),男,副教授,硕士生导师,主要从事石油天然气勘探与开发方面的研究,E-mail: hufei@jlu.edu.cn
  • 作者简介:孟庆涛(1984—),女,教授,博士生导师,主要从事沉积学、石油地质学、非常规油气勘探与开发方面的研究,E-mail: mengqt@jlu.edu.cn
  • 基金资助:
    吉林省自然科学基金项目(20230101081JC);吉林大学科技创新团队项目(2021TD-05)

Lithofacies Types and Genesis of Fine-Grained Sediments in Terrestrial Depression Lake Basin: Taking Upper Cretaceous Qingshankou Formation in Songliao Basin as an Example

Meng Qingtao1,2, Hu Fei1,2, Liu Zhaojun1,2, Sun Pingchang1,2, Liu Rong1,2    

  1. 1. College of Earth Sciences,Jilin University,Changchun 130061, China 
    2. Key Laboratory for Oil Shale and Coexisting Minerals of Jilin Province,Jilin University,Changchun 130061, China
  • Received:2023-11-21 Online:2024-01-26 Published:2024-03-11
  • Supported by:
    the Natural Science Foundation of Jilin Province (20230101081JC) and the Program for Jilin University Science and Technology Innovative Research Team (2021TD-05)

摘要: 页岩油是目前非常规油气研究的热点与难点。细粒沉积岩岩相类型及成因分析是页岩油“源储”特征研究及“甜点”预测的有效途径。松辽盆地青山口组细粒沉积广泛发育,是页岩油富集的有效层段。本文通过岩性、矿物成分、有机质丰度与沉积构造4个参数,将松辽盆地青山口组细粒沉积岩划分为6种岩相:高有机质泥纹层黏土质页岩(A)、中高有机质含细粉砂纹层长英质页岩(B)、中低有机质含粗粉砂纹层长英质页岩(C)、低有机质层状粉砂岩(D)、低有机质层状介形虫灰岩(E)和低有机质层状白云岩(F)。进一步从水动力学与有机质富集方面探讨了不同岩相类型的成因,并建立了相应的沉积模式。具体为:在风暴浪基面之下的静水、咸水环境、高湖泊生产力背景中,浮游藻类与黏土絮状物均匀悬浮沉降,形成贫富有机质黏土质纹层,沉积A岩相;在正常浪基面之下的相对静水(浪基面附近局部动荡)、半咸水环境、高湖泊生产力背景中,三角洲径流与洪流带来的细粉砂颗粒继续向湖盆中央搬运,经均匀悬浮沉降形成长英质纹层,间歇期悬浮沉降形成黏土质纹层,形成B岩相;正常浪基面之下,洪水携带粉砂级颗粒,顺着水下分流河道搬运至外前缘,以稳定性浊流的形式进入前三角洲,随流速逐渐降低,分异形成粗粉砂—细粉砂纹层,间歇期悬浮沉降形成黏土质纹层,形成C岩相;正常浪基面之下,三角洲前缘早期沉积物在阵发性浊流的作用下,滑塌至较深水区,形成D和E岩相;于正常浪基面与风暴浪基面之间,在相对干燥的气候背景下的咸水环境中,形成F岩相。


关键词: 陆相坳陷湖盆, 细粒沉积, 岩相, 成因模式, 页岩油, 松辽盆地, 青山口组

Abstract: Shale oil is currently a hot and difficult topic in unconventional oil and gas research. The analysis of the types and genesis of fine-grained sedimentary lithofacies is an effective way to study the “source and reservoir” characteristics of shale oil and predict its “sweet spot”. The fine-grained sediments of the Qingshankou Formation in the Songliao basin are widely developed and are effective intervals for shale oil enrichment. Based on four parameters, including organic matter abundance, mineral composition, lithology, and sedimentary structures, six kinds of lithofacies of fine-grained sedimentary rocks of the Qingshankou Formation in the Songliao basin are divided in this paper, as clay shale with high content of organic matter and mud-grade lamination(A), felsic shale with medium-high content of organic matter and fine silt-grade lamination(B), felsic shale with medium-low content of organic matter and coarse silt-grade lamination(C), layered siltstone with low content of organic matter(D), layered ostracoid limestone with low content of organic matter (E) and layered dolomite with low content of organic matter (F). Then, the genesis of different lithofacies types were discussed from the perspectives of hydrodynamics and organic matter enrichment, and corresponding sedimentary models were established. In the static and salty water environment below the base of storm waves with high lake productivity, planktonic algae and clay flocs are uniformly suspended and settled, forming organic-rich clay lamination and lithofacies A is deposited. In a relatively static and brackish water environment below the normal wave base (with local turbulence near the wave base) with high lake productivity, the fine silt particles brought by delta runoff and flood flow continue to move towward the center of the lake basin, forming a felsic lamination through uniform suspension and sedimentation, and a clay lamination is formed during the period of intermittent suspension and sedimentation, and lithofacies B is deposited. Below the normal wave base, the flood which carries silt-grade particles are transported to the outer front of delta along the underwater distributary channel, and enter the front delta in the form of stable turbidity current. As the flow velocity gradually decreases, it forms a coarse to fine silt lamination, clay lamination is formed during the period of intermittent suspension and sedimentation, and lithofacies C is deposited. Below the normal wave base, the early sediments of the delta front, under the action of paroxysmal turbidity currents, collapse into deeper water, forming lithofacies D and E. Between the normal wave base and storm wave base, lithofacies F is formed in saline water environment under a relatively dry climate.


Key words: terrestrial depression lake basin, fine-grained sediments, lithofacies, genetic model, shale oil, Songliao basin, Qingshankou Formation

中图分类号: 

  • P618.13
[1] 胡佳, 王丽丽, 王立贤, 韩昊天, 陶鹏, 唐华风.

基于岩浆汇聚区和上升通道特征的火山岩分布规律——以松辽盆地长岭断陷下白垩统营城组为例 [J]. 吉林大学学报(地球科学版), 2024, 54(2): 429-446.

[2] 唐华风, 边伟华, 王璞珺, 高有峰, 黄玉龙, 张艳, 户景松. 盆地火山岩相分类和模式[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1651-1671.
[3] 单玄龙, 邢健, 苏思远, 李昂, 赵振铎, 杨钦, 李雪松, 井翠, 张家浩, 孙越.

川南长宁地区下古生界五峰组—龙马溪组一段页岩岩相与含气性特征 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1323-1337.

[4] 李研, 聂逢君, 王东旭, 贾立城, 卢胜军, 严兆彬, 罗敏, 刘晓辉. 松辽盆地北部砂岩型铀矿成矿潜力分析[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1075-1089.
[5] 白雪峰, 刘家军, 陆加敏, 孙立东, 李军辉, 李笑梅, 狄嘉祥, 刘丽娟, 戴世立, 杨 亮. 松辽盆地北部中央古隆起带基岩风化壳气藏富集规律[J]. 吉林大学学报(地球科学版), 2023, 53(2): 343-.
[6] 孙月成, 周锡明, 刘洋, 陈树旺, 张健, 杨光, 鹿琪, 陈艺竹, 张海华, 苏飞, 卞雄飞, 公繁浩, 张德军, 孙雷, 李晓海. 松辽盆地深部上古生界物性特征与典型区勘探实践[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1747-1761.
[7] 张立亚, 徐 文, 沈艳杰. 松辽盆地南部深层致密砂岩气储层形成机制及成藏主控因素[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1707-1717.
[8] 孟 颖, 王 剑, 马万云, 雷海艳, 孙平昌, 方 石, 丁 聪, 王 灼, 陶连馨. 基于细粒岩石类型对玛湖凹陷下二叠统风城组烃源岩分类评价[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1735-1746.
[9] 罗卫锋, 胡志方, 王胜建, 杨云见, 张林, 张云枭. 基于可控源电磁技术的页岩压裂监测试验——以宜昌地区鄂阳页2HF井为例[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1338-.
[10] 胡艳飞, 孔庆莹 . 鄂尔多斯盆地西南部长8油层储层主控因素及分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1078-.
[11] 任宪军.

松辽盆地长岭断陷盆缘陡坡带中性火山岩相模式及其对储层的控制作用 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 816-828.

[12] 易娟子, 张少敏, 蔡来星, 陈守春, 罗鑫, 于吉星, 罗妮娜, 杨田.

川东地区下侏罗统凉高山组地层-沉积充填特征与油气勘探方向 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 795-815.

[13] 张辉, 王志章, 杨亮, 李忠诚, 邢济麟. 松南上白垩统青山口组一段不同赋存状态页岩油定量评价[J]. 吉林大学学报(地球科学版), 2022, 52(2): 315-327.
[14] 仉涛, 郭智奇, 刘财, 刘喜武, 刘宇巍, . 盐间页岩油韵律层地震响应模拟及页岩薄储层厚度预测[J]. 吉林大学学报(地球科学版), 2022, 52(1): 281-.
[15] 赵健, 赵俊峰, 任康绪, 王童奎, 许必锋, 郝强升, 高志远. 巴西桑托斯盆地高含CO2油气藏类型、特征及成因模式[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1654-1664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[5] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[6] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[7] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[8] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[9] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[10] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .