吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (6): 2142-2153.doi: 10.13278/j.cnki.jjuese.20230323

• 地质与资源 • 上一篇    下一篇

 频谱恢复和波形反演在大宁—吉县区块薄储层预测中的应用

张科1,窦松江1,高欢欢1,石石2,李涛1,汤戈1,杨冰1   

  1. 1.大港油田勘探开发研究院,天津300450
    2.中联煤层气国家工程研究中心有限责任公司,北京100020
  • 出版日期:2024-11-26 发布日期:2024-12-24
  • 作者简介:张科(1989—),男,工程师,主要从事开发地质、地震解释及储层预测方面的研究,E-mail: hyxd103@163.com
  • 基金资助:
    中国石油集团“十四五”重大专项(2021DJ2002 (JT))

Application of Spectral Recovery and Waveform Inversion in Thin Reservoir Prediction in Daning-Jixian Block

Zhang Ke1, Dou Songjiang1, Gao Huanhuan1, Shi Shi2, Li Tao1, Tang Ge1, Yang Bing1#br#

#br#
  

  1. 1. Exploration and Development Research Institute of Dagang Oilfield, Tianjin 300450, China
    2. National Engineering Research of Coalbed Methane Development & Utilization, Beijing 100020, China
  • Online:2024-11-26 Published:2024-12-24
  • Supported by:
    Supported by the Major Special Project of China National Petroleum Corporation During the 14th Five-Year Plan Period (2021DJ2002 (JT))

摘要: 鄂尔多斯盆地东部大宁—吉县B区块山西组二段三亚段(山23)的薄储层常与太原组顶部的碳酸盐岩伴生,储层致密,岩性复杂,砂、泥岩阻抗差异小,非均质性强,储层预测难度大。为有效提高地震资料定量解释的精度,落实B区块薄储层的分布特征,笔者提出了一种地震相-拓频-反演相结合的薄致密砂岩储层预测方法。该方法首先根据地质、测录井等资料建立储层岩心相、测井相、地震相特征,然后利用频谱恢复拓频技术提高地震资料的分辨率,最后重构岩性特征曲线,利用拓频后的高分辨率地震资料进行波形指示反演,雕刻薄储层平面分布,实现研究区山23致密薄储层定量预测。结果表明:目的层有4种地震响应特征,分别为①水下分流河道相,表现为强—中弱强振幅组合,②水下分流河道相侧翼区,表现为强—弱—强振幅组合,③席状砂、远砂坝相,表现为中弱—中强—强振幅组合,④分流间湾相,表现为弱—强振幅组合;地震资料的主频由30 Hz提升至40 Hz,频宽由10~60 Hz拓宽至8~80 Hz,使得薄储集层在提高频率后的资料中表现得更清晰;重构特征曲线,利用拓频后的地震数据反演的砂岩厚度与井点厚度具有很好的线性关系,判定系数达到0.911,吻合度为84%,依据反演成果指导水平井钻进,储层钻遇率达95%。

关键词: 储层预测, 复杂岩性, 薄储层, 曲线重构, 波形指示反演

Abstract:  In the eastern Ordos basin,  thin reservoirs in the Third Submember of the Second Member of Shanxi Formation (Shan23 Submember) of Daning-Jixian Block B are frequently closely associated with  carbonate rocks atop  Taiyuan Formation. These reservoirs are tight, with  complex lithology, small impedance difference between sandstone and mudstones strong heterogeneity, and great difficulty in reservoir prediction. In order to effectively improve the accuracy of quantitative interpretation of seismic data and implement the distribution characteristics of thin reservoirs in Block B, a novel prediction method for thin tight sandstone reservoirs amalgamating seismic phase, frequency extension and inversion phase has been proposed. This method firstly makes clear the characteristics of core facies, electrical logging facies and seismic facies of the reservoir based on  geological and logging data. Subsequently, spectral recovery and frequency extension technologies are used to improve the resolution of seismic data. Lastly, the lithology curves are regenerated, and waveform indicative inversion is performed using the high-resolution seismic data after frequency extension and the planar distribution of thin reservoirs is depicted to realize the quantitative prediction of tight and thin reservoirs in the Shan23 Submember of the study area. The results show that there are four types of seismic response characteristics for the target layer: ①Subaqueous distributary channel facies, characterized by a combination of strong, medium-weak and strong amplitude; ②Lateral area of  subaqueous distributary channel facies, characterized by a combination of strong, weak and strong amplitude; ③Sheet sand and distal sand bar facies, characterized by a combination of medium-weak, medium-strong and strong amplitude; ④Distributary bay facies, characterized by a combination of weak and strong amplitude. The dominant frequency of the seismic data is  increased from 30 Hz to 40 Hz, and the frequency bandwidth is  expanded from 10-60 Hz to 8-80 Hz, making more clear images for thin reservoirs in seismic data after frequency extension. The reconstructed curves show a good linear relationship between the sandstone thickness obtained from the post-frequency-extension seismic data inversion and the sandstone thickness from well, with a determination coefficient of 0.911 and a conformity of 84%. Based on the inversion data, horizontal well drilling is  guided, achieving a reservoir encounter rate of 95%.


Key words:  , reservoir prediction, complex lithology, thin reservoir, curve reconstruction, waveform indicative inversion

中图分类号: 

  • TE132
[1] 张军华, 刘震, 李琴, 任雄风, 赵杰. 东营凹陷红层地球物理特征分析及有利储层预测[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1256-1267.
[2] 潘保芝, 蒋必辞, 刘文斌, 房春慧, 张瑞. 致密砂岩储层含气测井特征及定量评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 930-937.
[3] 秦雪霏,李巍. 大牛地气田煤系地层去煤影响储层预测技术[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1048-1054.
[4] 孙乃泉,云露,蒲仁海,杨素举. 塔里木盆地顺9井区柯坪塔格组下段沉积微相与储层展布[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1716-1725.
[5] 乐友喜,黄健良,张阳,周磊,张玉明,陈孔全. 地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 632-640.
[6] 秦月霜, 陈友福, 叶萍. 薄窄砂体地震跟踪预测方法[J]. J4, 2012, 42(1): 269-274.
[7] 苏明军, 周立宏, 王西文, 李胜军, 张兆辉. 斜坡区岩性地层圈闭识别技术与应用--以歧口凹陷滨海地区东部为例[J]. J4, 2011, 41(3): 673-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!