吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (3): 1014-1027.doi: 10.13278/j.cnki.jjuese.20240053

• 地球探测与信息技术 • 上一篇    下一篇

基于压裂信号和数据增强的脆性智能预测方法

王婷婷1,杜学童1,赵万春2,蔡萌3,史晓东4   

  1. 1.东北石油大学电气信息工程学院,黑龙江大庆 163318
    2.东北石油大学非常规油气研究院,黑龙江大庆163318
    3.大庆油田有限责任公司采油工艺研究院,黑龙江大庆163000
    4.大庆油田有限责任公司第九采油厂,黑龙江大庆163853
  • 出版日期:2025-05-26 发布日期:2025-06-06
  • 通讯作者: 赵万春(1978-),男,教授,博士生导师,主要从事压裂造缝相关研究,E-mail: zhaowanchun@nepu.edu.cn
  • 作者简介:王婷婷(1982-),女,教授,博士生导师,主要从事先进控制算法、人工智能研究,E-mail: wangtingting@nepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52074088,52474036,52174022);页岩油地质工程一体化压裂与防控技术创新团队项目(CYCX24015);黑龙江省自然科学基金联合基金重点项目(ZL2024E008);黑龙江省博士后科研启动项目(LBH-Q21086);黑龙江省“揭榜挂帅”科技攻关项目(DQYT-2022-JS-758) 

 Intelligent Prediction Method for Brittleness Based on Fracturing Signals and Data Augmentation

Wang Tingting1, Du Xuetong1, Zhao Wanchun2, Cai Meng3, Shi Xiaodong4   

  1. 1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
    2. Unconventional Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
    3. Oil Production Technology Research Institute, Daqing Oilfield Co., Ltd., Daqing 163000, Heilongjiang, China
    4. Ninth Oil Production Plant, Daqing Oilfield Co., Ltd., Daqing 163853, Heilongjiang, China
  • Online:2025-05-26 Published:2025-06-06
  • Supported by:
    Supported by the National Natural Science Foundation of China (52074088, 52474036, 52174022), the Project of Shale Oil Geology and Engineering Integrated Fracturing and Prevention Technology Innovation Team (CYCX24015), the Key Project of the Joint Fund of Natural Science Foundation of Heilongjiang Province (ZL2024E008), the Project of Heilongjiang Postdoctoral Foundation (LBH-Q21086) and the  ‘Open Bidding for Selecting the Best Candidates’ Heilongjiang Province Science and Technology Research Project (DQYT-2022-JS-758)

摘要: 储层脆性的精确预测对地下岩土工程灾害预警和油气开采具有重要意义。基于岩石受压破裂时产生的声发射信号,提出一种脆性智能预测方法。实验制备4类尺寸相同但脆性不同的岩石进行室内单轴岩石压裂,将采集到的破裂信号经预处理后制作样本数据集。针对训练数据不足和传统数据增强方法的局限性等问题,在深度卷积生成对抗网络(deep convolutional generative adversarial networks, DCGAN)的基础上进行改进,设计一种基于谱归一化的深度卷积注意力生成对抗网络(CS-DCGAN)模型,输出高质量样本时频图像,丰富原始样本数据集,作为残差网络的输入;对图像的有效信息进行特征提取、学习、迭代训练以建立脆性智能预测模型,通过不断调整模型的超参数以提高模型预测精度;最后进行多指标评估。实验结果表明,相较于传统DCGAN,CS-DCGAN生成的样本质量较高,FID(Frechet inception distance)最小值为67.96,能够缓解过拟合等问题,提高了残差网络的性能,对不同脆性的平均识别准确率最高可达94.95%,证明了所提方法的有效性。

关键词: 岩石脆性, 声发射信号, 生成对抗网络, 残差网络, 数据增强

Abstract:  The accurate prediction of reservoir brittleness is of great significance for underground geotechnical engineering disaster warning and oil and gas extraction. A brittle intelligent prediction method is proposed based on the acoustic emission signals generated during rock compression and fracture. Four types of rocks with the same size but different brittleness were experimentally prepared for indoor uniaxial rock fracturing, and the collected fracture signals were preprocessed to create a sample dataset. To address issues such as insufficient training data and limitations of traditional data augmentation methods, an improved deep convolutional generative adversarial network (DCGAN) is proposed. A deep convolutional attention generative adversarial network model based on spectral normalization (CS-DCGAN) is designed to output high-quality time-frequency images of samples, enrich the original sample dataset, and serve as input for the residual network; Extracting, learning, and iteratively training effective information from images to establish an intelligent brittleness prediction model, and continuously adjusting the hyperparameters of the model to improve its prediction accuracy; Finally, a multi-criteria evaluation is performed. The experimental results show that compared with traditional DCGAN, the improved model generates higher sample quality, with a minimum Frechet inception distance (FID) of 67.96, which can alleviate overfitting and improve the performance of the residual network. The average recognition accuracy for different brittleness can reach up to 94.95%, proving the effectiveness of the proposed method.


Key words: rock brittleness, acoustic emission signal, generative adversarial network, residual network, data augmentation

中图分类号: 

  • TE19
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!