吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (3): 1001-1013.doi: 10.13278/j.cnki.jjuese.20240047

• 地球探测与信息技术 • 上一篇    下一篇

基于多尺度特征自注意力模型的地震数据重建方法

耿鑫1,王长鹏1,张春霞2,张讲社2,熊登3   

  1. 1.长安大学理学院,西安710064
    2.西安交通大学数学与统计学院,西安710049
    3.东方地球物理公司物探技术研究中心,河北涿州072751
  • 出版日期:2025-05-26 发布日期:2025-06-06
  • 通讯作者: 王长鹏(1985—),男,副教授,硕士生导师,主要从事图像处理研究,E-mail: cpwang@chd.edu.cn
  • 作者简介:耿鑫(1999—),男,硕士研究生,主要从事地震数据处理方面研究,E-mail: gengxin@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(12001057);长安大学中央高校基础研究基金(300102122101)

Seismic Data Reconstruction Method Based on Multi-Scale Feature Self-Attention Model

Geng Xin1, Wang Changpeng1, Zhang Chunxia2, Zhang Jiangshe2, Xiong Deng3   

  1. 1. School of Science, Chang’an University, Xi’an 710064, China
    2. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
    3. Research &Development Center, BGP, Zhuozhou 072751, Hebei, China
  • Online:2025-05-26 Published:2025-06-06
  • Supported by:
    Supported by the National Natural Science Foundation of China (12001057) and the Fundamental Research Funds for the Central Universities in Chang’an University (300102122101)

摘要: 由于采集条件和成本的限制,叠前地震数据在空间上会出现不规则分布或不完整的情况,给地震数据的后续处理和解释带来困难。近年来广泛应用于缺失地震数据重建工作的卷积神经网络方法缺乏对全局信息的关注,同时多次下采样的网络模型会带来低频信号损失,低振幅缺失部分的重建结果仍需要进一步改进。本文提出了一种多尺度特征自注意力模型,在U-Net主干网络的瓶颈处设计了一个基于自注意力机制的多尺度小波融合块,通过离散小波变换和自注意力机制将所有编码器的输出进行融合,有效平衡全局和局部特征处理,降低下采样带来的信号损失;在网络中插入多尺度感受野,通过学习不同退化数据的多尺度特征来提高性能,增强对不同频率的频谱学习。与经典的地震数据重建方法相比,本文算法的重建结果在定性和定量评估方面均有提升:在30%连续缺失的合成数据集和真实数据集上,重建结果的信噪比分别为21.748 7和14.954 0 dB;在50%随机缺失和规则缺失的合成数据集上,重建结果的信噪比分别为28.832 0和37.724 2 dB。


关键词: 自注意力机制, 小波融合, 多尺度感受野, 地震数据重建

Abstract:  Due to the limitation of acquisition conditions and costs, the pre-stack seismic data may be irregularly distributed or incomplete in space, which  brings difficulties to the subsequent processing and interpretation of seismic data. In recent years, the convolution neural network method widely used in the reconstruction of missing seismic data lacks attention to the global information, while the network model with multiple downsampling brings low-frequency signal loss, and the reconstruction results of the low-amplitude missing part still need to be further improved. Therefore, this paper proposes a multi-scale feature self-attention model. A multi-scale wavelet fusion block based on the self-attention mechanism is designed at the bottleneck of the U-Net backbone network, and the outputs of all encoders are fused by discrete wavelet transform and self-attention mechanism, which effectively balances the global and local feature processing and reduces the signal loss caused by downsampling. A multi-scale receptive field is inserted into the network to improve performance and enhance spectral learning of different frequencies by learning multi-scale features for different degraded data. Compared with the classical reconstruction methods for seismic data, the reconstruction results of the algorithm in this paper are improved in both qualitative and quantitative assessments. On the synthetic dataset and the real dataset with 30% continuous missing  data,  the signal-to-noise ratios  of the reconstruction results   are 21.748 7  and 14.954 0 dB  respectively; On the synthetic dataset with 50% random missing and regular missing data, the signal-to-noise ratios of the reconstruction results are 28.832 0  and 37.724 2 dB  respectively.


Key words: self-attention mechanism, wavelet fusion, multi-scale receptive field, seismic data reconstruction

中图分类号: 

  • P631.4
[1] 葛康建, 王长鹏, 张春霞, 张讲社, 熊登. 基于粗-细网络模型分步训练的地震数据重建方法[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1396-1405.
[2] 杨帆, 王长鹏, 张春霞, 张讲社, 熊登.

基于联合加速近端梯度和对数加权核范数最小化的地震数据重建 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1582-1592.

Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!