吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1209-1221.doi: 10.13278/j.cnkij.juese.20180040

• 地质与资源 •    下一篇

塔里木盆地巴楚隆起北缘吐木休克弧形基底卷入斜向滑移构造

杨庚, 陈竹新, 刘银河, 王晓波   

  1. 中国石油勘探开发研究院/提高石油采收率国家重点实验室, 北京 100083
  • 收稿日期:2018-03-06 发布日期:2019-10-10
  • 作者简介:杨庚(1965-),男,高级工程师,博士,主要从事盆地构造分析与石油地质综合方面的研究,E-mail:yanggeng@petrochina.com.cn
  • 基金资助:
    国家科技重大专项(2016ZX05003-001);中国石油天然气股份有限公司科技重大专项(2019B-0503,2016E-0601)

A Basement-Involved Structure Above Oblique-Slip Tumuxiuke Fault in Northern Margin of Bachu Uplift in Tarim Basin, Northwest China

Yang Geng, Chen Zhuxin, Liu Yinhe, Wang Xiaobo   

  1. Research Institute of Petroleum Exploration and Development, PetroChina/State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China
  • Received:2018-03-06 Published:2019-10-10
  • Supported by:
    Supported by National Science and Technology Major Project (2016ZX 05003-001) and PetroChina Science and Technology Major Project (2019B-0503,2016E-0601)

摘要: 石油地震资料揭示塔里木盆地中央巴楚隆起为结晶基底和古生代地层相对隆升区,地表为第四纪陆相碎屑岩不整合覆盖,隐伏隆起大部分区域缺失中、新生界。在隆起南北两侧构造变形比较强烈,均发育基底卷入的逆冲构造和古生界内逆冲构造。根据钻井资料和二维地震测线详细的构造解释,应用断层相关褶皱理论得知:吐木休克基底卷入逆冲断层是在中生界早期形成的基底卷入楔形构造的基础上,在新生界晚期再次活动形成的;新生代晚期中亚地区强烈陆内变形,导致塔里木盆地先期形成的巴楚隆起再次挤压隆升;晚期变形过程中,先存构造与形成新构造挤压方向的偏差导致新构造发育有走滑分量,形成典型的斜向挤压构造——吐木休克旋转弧形构造。平面分布上,弧形构造东西向延伸的中段和北东向延伸的西段,早期为基底卷入楔形构造,晚期发育基底卷入逆冲构造;近北西向延伸的东段,晚期发育基底卷入楔形构造叠加在早期基底卷入楔形构造之上,说明该构造至少经历了两期变形。由于晚期基底卷入逆冲断层具有走滑分量,导致盖层单斜构造发育3类应变带及相应构造:拉伸变形带发育的正断层、剪切变形带发育的走滑断层及挤压应变带即走滑构造分量;西段发育左行逆冲走滑断裂带及伸展变形;东段发育右行逆冲走滑断裂带。弧形构造西部发育的构造样式与2012年Keating等模拟的斜向断层位移形成的构造样式非常相似,说明弧形构造西段吐木休克基底卷入逆冲构造具有走滑分量,从而合理地解释了该区发育的构造样式及正断层形成机制。

关键词: 塔里木盆地, 巴楚隆起, 基底卷入, 弧形构造, 斜向滑移, 正断层

Abstract: Seismic data show that the crust of the buried Bachu uplift in the central Tarim consists of the crystalline basement and Paleozoic strata, without Mesozoic and Cenozoic strata, and is unconformly covered by Quaternary terrestrial clastic rock. Both north and south margins of the Bachu uplift present intense deformation with basement-involved structures and thrust fault under the Paleozoic cover. A large-scale northward arcuate structure of the Tumuxiuke basement-involved fault is developed in the north margin of the Bachu uplift. By use of the fault-related theories, we interpreted 2D seismic data with the strata determined by the well logging data, and concluded that the Tumuxiuke basement-involved fault was formed by reactivation of the pre-existing basement-involved wedge-shaped structures. The Late Cenozoic India-Asia collision caused intense intracontinental deformations in the Central Asia and the reactivation of the Bachu uplift. It is unlikely that the pre-existing structures are perfectly perpendicular to the applied contraction direction of the new tectonic event,and most of these structures should consequently experience a strike-slip motion during the reactivation and the arcuate Tumuxiuke basement-involved fault was deformed by the progressive bending of once-straight structural trends (the pre-existing Tumuxiuke basement-involved wedged-shaped structure) during this time. The seismic data show that a wedge-shaped basement-involved structure is clear in the east part, but unclear in the west and central parts of the arcuate Tumuxiuke thrust belt, where many normal faults were formed in anticline core or fore-limbs of monoclines in the seismic reflection sequences. On the top and west parts of the orocline, the late basement-involved faults were developed on the pre-existing Tumuxiuke basement-involved wedge-shaped structures. On the east part of the orocline, the late Tumuxiuke basement-involved wedge-shaped structure reactivated the pre-existing wedge-shaped one. Our interpretations state clearly that there were three general strain zones and corresponding structures in the caprock monoclines that formed the above oblique-slip Tumuxiuke basement-involved fault in the western part of the arc-shaped structure, which is very similar to the physical modeling by Keating et al. (2012), but only in the two strain zones (extension and contraction) on the top of the arc-shaped structure. The extension faults are dominant in the upper-hinge region, while the contraction faults are dominant in the lower-hinge region, and the strike-slip faults are dominant in the middle of the fold limb. The boundaries of these three zones and the magnitude of strain in each zone vary with the oblique slip determined by its position in the arcuate structure.

Key words: Tarim basin, Bachu uplift, basement-involved, actuate structure, oblique-slip, normal fault

中图分类号: 

  • P542
[1] 郑显华.塔里木盆地西部巴楚一麦盖提地区石油地质特征及勘探建议[J].石油实验地质,1995,17(2):114-120. Zheng Xianhua. Petroleum Geological Characteristics and Exploration Proposals to Bachu-Maigaiti Area of the West Tarim Basin[J]. Petroleum Geology and Experiment, 1995,17(2):114-120.
[2] 谢晓安,胡素云,卢华复.探讨塔里木盆地巴楚的正反转构造[J]. 地质论评, 1998,44(1):1-6. Xie Xiaoan, Hu Suyun,Lu Huafu. Positive Inversion Structure in the Bachu Fault-Uplift in the Tarim Basin[J]. Geological Review, 1998, 44(1):1-6.
[3] 何文渊, 李江海, 钱祥麟,等.塔里木盆地巴楚断隆中-新生代的构造演化[J].北京大学学报(自然科学版),2000,36(4):539-546. He Wenyuan, Li Jianghai, Qian Xianglin,et al. The Mesozoic-Cenozoic Evolution of Bachu Fault Uplift in Tarim Basin[J]. Acta Scientiarum Naturalium Universities Pekinensis, 2000, 36(4):539-546.
[4] 任建业,张俊霞,阳怀忠,等.塔里木盆地中央隆起带断裂系统分析[J].岩石学报,2011,27(1):219-230. Ren Jianye,Zhang Junxia,Yang Huaizhong,et al. Analysis of Fault Systems in the Central Uplift,Tarim Basin[J]. Acta Petrologica Sinica,2011,27(1):219-230.
[5] 杨明慧,金之钧,吕修祥,等. 塔里木盆地基底卷入扭压构造与巴楚隆起的形成[J].地质学报,2007,81(2):158-165. Yang Minghui, Jin Zhijun, Lü Xiuxiang, et al. Basement-Involved Transpressional Structure and the Formation of the Bachu Uplift, Tarim Basin, Northwestern China[J]. Acta Geologica Sinica, 2007,81(2):158-165.
[6] 杨庚,赵孟军,陈竹新,等.塔里木巴楚隆起北缘吐木休克楔形基底卷入构造[J]. 大地构造与成矿学,2017,41(4):638-652. Yang Geng, Zhao Mengjun, Chen Zhuxin, et al. A Large-Scale Basement-Involved Wedge Structure of Tumuxiuke Fault in Northern Margin of Bachu Uplift in the Tarim Basin, Northwest China[J]. Geotectonica et Metallogenia, 2017,41(4):638-652.
[7] 刘志宏,林东成,王文革,等.塔里木盆地吐木休克断裂带的研究[J].长春科技大学学报,2001,31(3):209-223,235. Liu Zhihong, Lin Dongcheng, Wang Wenge et al. Study on Tumuxiuke Fault Belt in Tarim Basin[J]. Journal of Changchun University of Science and Technology,2001,31(3):209-223,235.
[8] 朱德丰,刘和甫,吴根耀.塔里木盆地西部吐木休克断裂带的主要特征和构造演化[J].地质科学,2008,43(2):209-227. Zhu Defeng,Liu Hefu,Wu Genyao.Mail Characteristics and Structural Evolution of the Tumuxiuke Fault Zone in the Western Tarim Basin[J]. Chinese Journal of Geology,2008,43(2):209-227.
[9] 肖安成,杨树锋,李曰俊,等. 塔里木盆地巴楚隆起断裂系统主要形成时代的新认识[J]. 地质科学, 2005, 40(2):291-302. Xiao Ancheng, Yang Shufeng, Li Yuejun, et al. Main Period for Creation of Fracture System in the Bachu Uplift,Tarim Basin[J]. Chinese Journal of Geology, 2005, 40(2):291-302.
[10] 王毅, 张仲培, 张波,等.塔里木盆地巴楚地区大型膝褶带的发现及油气勘探意义[J].石油与天然气地质,2014,35(6):914-924. Wang Yi, Zhang Zhongpei, Zhang Bo, et al. Discovery of Large Kink-Band Structures and Petroleum Exploration Implications in Bachu Area Tarim Basin[J]. Oil & Gas Geology,2014,35(6):914-924.
[11] 李曰俊,孙龙德,杨海军,等. 塔里木盆地阿瓦提凹陷周缘的晚新生代张扭性断层带[J]. 地质科学,2013,48(1):109-123. Li Yuejun, Sun Longde, Yang Haijun, et al. The Late Cenozoic Tensor-Shear Fault Zones Around Awati Sag, NW Tarim Basin[J]. Chinese Journal of Geology,2013,48(1):109-123.
[12] Gries R. North-South Compression of Rocky Mountain Foreland Structures[C]//Lowell J D. Rocky Mountain Foreland Basinsand Uplifts. Denver, Colorado:Rock Mountain Association of Geologists, 1983:9-32.
[13] Erslev E A. Thrust, Back-Thrusts, and Detachment of Rocky Mountain Foreland Arches[C]//Schmidt C J, Chase R B, Erslev E A. Laramide Basement Deformation in the Rocky Mountain Foreland of the Western United States.Boulder, Colorado:Geological Society of America Special Paper, 1993:339-358.
[14] Varga R J. Rocky Mountain Foreland Uplifts:Products of a Rotating Stress Field or Strain Partitioning?[J] Geology, 1993,21(12):1115-1118.
[15] Bump A P. Reactivation, Trishear Modeling, and Folded Basement in Laramide Uplifts:Implications for the Origins of Intra-Continental Faults[J]. GSA Today, 2003,13(3):4-10.
[16] Huntoon P W. Influence of Inherited Precambrian Basement Structure on the Localization and Form of Laramide Monoclines, Grand Canyon, Arizona[C]//Schmidt C J, Chase R B, Erslev E A. Laramide Basement Deformation in the Rocky Mountain Foreland of the Western United States. Boulder, Colorado:Geological Society of America Special Paper,1993:243-256.
[17] Schmidt C J, Genovese P W, Chase R B. Role of Basement Fabric and Cover-Rock Lithology on the Geometry and Kinematics of Twelve Folds in the Rocky Mountain Foreland[C]//Schmidt C J, Chase R B, Erslev E A. Laramide Basement Deformation in the Rocky Mountain Foreland of the Western United States. Boulder, Colorado:Geological Society of America Special Paper, 1993:1-44.
[18] Marshak S, Karlstrom K, Timmons J M. Inversion of Proterozoic Extensional Faults:An Explanation for the Pattern of Laramide and Ancestral Rockies Intracratonic Deformation, United States[J]. Geology,2000,28(8):735-738.
[19] Stone D S. Wrench Faulting and Rocky Mountain Tectonics[J]. The Mountain Geologist, 1969,6:67-79.
[20] Stone D S. Basement-Involved Thrust-Generated Folds as Seismically Imaged in the Subsurface of the Central Rocky Mountain Foreland[C]//Schmidt C J, Chase R B, Erslev E A. Laramide Basement Deformation in the Rocky Mountain Foreland of the Western United States. Boulder, Colorado:Geological Society of America Special Paper,1993:271-318.
[21] 刘亚雷,杨海军,齐英敏,等.塔里木盆地吐木休克构造带断裂构造分析[J]. 地质科学,2013,48(1):124-132. Liu Yalei, Yang Haijun, Qi Yingmin, et al. Tectonic Analysis on Tumuxiuke Fault Belt in the Western Tarim Basin[J]. Chinese Journal of Geology, 2013,48(1):124-132.
[22] Tapponnier P,Molnar P. Active Faulting and Cenozoic Tectonics of the Tian Shan, Mongolia, and Baykal Regions[J]. Journal of Geophysical Research:Solid Earth, 1979,84(B7):3425-3459.
[23] Neil E A,Houseman G A. Geodynamics of the Tarim Basin and the Tian Shan in Central Asia[J]. Tectonics, 1997, 16(4):571-584.
[24] Suppe J, Chou G T, Hook S C. Rates of Folding and Faulting Determined from Growth Strata[C]//McClay K R. Thrust Tectonics,Chapman &Hall,London:[s.n.].1992:105-121.
[25] Shaw J, Connors C, Suppe J. Seismic Interpretation of Contractional Fault-Related Folds[C]//Shaw J, Connors C, Suppe J. An AAPG Seismic Atlas Studies in Geology #53. Tulsa:The American Association of Petroleum Geologists, 2004:1-157.
[26] Mount V S, Kevin W M, Thomas W G,et al. Basement-Involved Contractional Wedge Structural Styles:Examples from the Hanna Basin, Wyoming.[C]//McClay K, Shaw J,Suppe J. Thrust Fault-Related Folding. Tulsa:AAPG Memoir, 2011:271-281.
[27] Marshak S. Salients, Recesses, Arcs, Oroclines, And Syntaxes; A Review of Ideas Concerning the Formation of Map-View Curves in Fold-Thrust Belts.[C]//McClay K R. Thrust Tectonics and Hydrocarbon Systems.Tulsa:American Association of Petroleum Geologists Memoir, 2004:131-156.
[28] Marshak S. Kinematics of Orocline and Arc Formation in Thin-Skinned Orogens[J]. Tectonics, 1988, 7(1):73-86.
[29] Macedo J M, Marshak S. Controls on the Geometry of Fold-Thrust Belt Salient[J]. Geological Society of America Bulletin, 1999, 111:1808-1822.
[30] Keating D P, Fischer M P, Blau H. Physical Modeling of Deformation Patterns in Monoclines Above Oblique-Slip Faults[J]. Journal of Structural Geology,2012, 39:37-51.
[31] Richard P. Experiments on Faulting in a Two-Layer Cover Sequence Overlying a Reactivated Basement Fault with Oblique-Slip[J]. Journal of Structural Geology, 1991,13(4):459-469.
[32] Tindall S E, Davis G H. Monocline Development by Oblique-Slip Fault-Propagation Folding:The East Kaibab Monocline, Colorado Plateau, Utah[J]. Journal of Structural Geology, 1999, 21:1303-1320.
[33] Nicol A, Dissen R V. Up-Dip Partitioning of Displacement Components on the Oblique-Slip Clarence Fault New Zealand[J]. Journal of Structural Geology, 2002, 24:1521-1535.
[34] Tetreault J, Jones C H, Erslev E, et al. Paleomagnetic and Structural Evidence for Oblique Slip in a Fault-Related Fold, Grayback Monocline, Colorado[J]. Geology Society American Bulletin, 2008, 120(7/8):877-892.
[35] Taniyama H. Distinct Element Analysis of Overburden Subjected to Reverse Oblique-Slip Fault[J]. Journal of Structural Geology,2017,96:90-101.
[1] 鄢伟, 张光学, 樊太亮, 夏斌, 高志前, 张莉, 杨振, 强坤生. 塔里木盆地塔中—顺托果勒地区奥陶系良里塔格组碳酸盐岩颗粒滩沉积特征[J]. 吉林大学学报(地球科学版), 2019, 49(3): 621-636.
[2] 罗少辉, 李九梅, 王辉. 塔里木盆地麦盖提斜坡皮山北新1井白云质角砾岩地层时代厘定[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1405-1415.
[3] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[4] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[5] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[6] 陈斐然, 张颖, 徐祖新, 谭程, 周肖肖. 全球前寒武—寒武系含油气盆地石油地质特征及成藏主控因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 974-989.
[7] 牛君, 黄文辉, 丁文龙, 蒋文龙, 张亚美, 漆立新, 云露, 吕海涛. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 61-73.
[8] 刘峻桥, 吕延防, 付广, 孙同文, 李佳兴. 正断层输导油气运移模式及其对油气分布的控制作用[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1672-1683.
[9] 杜治利, 曾昌民, 邱海峻, 杨有星, 张亮. 塔西南叶城凹陷二叠系两套烃源岩特征及柯东1井油源分析[J]. 吉林大学学报(地球科学版), 2016, 46(3): 651-660.
[10] 薛海涛, 田善思, 卢双舫, 刘敏, 王伟明, 王民. 分散可溶有机质的气源意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 52-60.
[11] 汤良杰,邱海峻,云露,杨勇,谢大庆,李萌,蒋华山. 塔里木盆地多期改造-晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 2014, 44(1): 1-14.
[12] 邓宾, 李智武,刘树根,孙东,钟勇,李金玺,汤聪. 大巴山城口弧形断裂带右旋走滑构造特征及其意义[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1501-1516.
[13] 王小敏,陈昭年,樊太亮,余腾孝,曹自成,何海. 巴麦地区晚石炭世碳酸盐岩台内滩储层综合评价[J]. 吉林大学学报(地球科学版), 2013, 43(2): 371-381.
[14] 周波,邱海峻, 段书府,李启明,邬光辉. 塔中Ⅰ号断裂坡折带上奥陶统碳酸盐岩储层微观孔隙成因[J]. 吉林大学学报(地球科学版), 2013, 43(2): 351-359.
[15] 高志前, 樊太亮, 杨伟红, 王鑫. 塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化[J]. J4, 2012, 42(3): 657-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁秀娟, 林学钰, 于 军. 虚拟现实技术在水文地质研究中的应用[J]. J4, 2005, 35(05): 636 -640 .
[2] 黄继国,魏海娟,王立军,王铁军,俞 双,黄国鑫. 三相生物流化床处理啤酒废水[J]. J4, 2005, 35(04): 510 -0514 .
[3] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[4] 付广,王有功,苏玉平. 古龙凹陷青山口组超压源岩天然气扩散速度演化史[J]. J4, 2007, 37(1): 91 -0097 .
[5] 孟庆涛,刘招君,柳蓉,王永莉. 松辽盆地农安地区上白垩统油页岩含油率影响因素[J]. J4, 2006, 36(6): 963 -0968 .
[6] 高红梅,高福红,樊馥,高玉巧. 鸡西盆地早白垩世烃源岩可溶有机质地球化学特征[J]. J4, 2007, 37(1): 86 -0090 .
[7] 谭惠,李殿超,杨殿范, 王瑛玮. 掺铁-TiO2/膨润土复合光催化材料制备及性能[J]. J4, 2007, 37(1): 204 -0208 .
[8] 任留东,王彦斌,赵越. 南极拉斯曼丘陵高级区假蓝宝石及有关矿物组合的形成过程[J]. J4, 2007, 37(5): 848 -0855 .
[9] 马艳萍,刘池洋,张复新,赵俊峰,喻 林,黄 雷. 鄂尔多斯盆地东胜砂岩型高岭土矿特征及成因机制[J]. J4, 2007, 37(5): 929 -0936 .
[10] 闵飞琼,王璞珺,于世泉,黄玉龙,吴颜雄,李喆,任利军. 营城组三段及二段岩性岩相和储层物性的精细刻画--基于标准剖面营三D1井全取心钻孔资料[J]. J4, 2007, 37(6): 1203 -1216 .