J4

• 地球物理·勘查技术 • 上一篇    下一篇

时频峰值滤波信号增强方法在实际地震资料处理中的应用

林红波1,2,李 月2,潘 伟3   

  1. 1.吉林大学 地球探测科学与技术学院,长春130026;2.吉林大学 通信工程学院,长春 130012;3.海南大学 信息科学技术学院,海口 570228
  • 收稿日期:2006-11-06 修回日期:1900-01-01 出版日期:2007-09-26 发布日期:2007-09-26
  • 通讯作者: 李月

Application of Signal Enhancement Method Based on Time-Frequency Peak Filtering to Seismic Data Processing

LIN Hong-bo1,2,LI Yue2,PAN Wei3   

  1. 1.College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;2.College of Communication Engineering, Jilin University, Changchun 130012, China;3.College of Information and Technology, Hainan University, Haikou 570228, China
  • Received:2006-11-06 Revised:1900-01-01 Online:2007-09-26 Published:2007-09-26
  • Contact: LI Lue

摘要: 在不损失有效信号能量的基础上从低信噪比地震资料中恢复出有效信息是地震资料处理的关键问题之一。针对这一问题利用基于伪Wigner-Ville分布的时频峰值滤波技术处理共炮点地震记录。基于伪Wigner-Ville分布的时频峰值滤波技术可以保证得到复杂地震记录的无偏估计,增强地震资料中的有效信息,去除随机噪声,有效地恢复同相轴。采用实际共炮点地震资料,比较时频峰值滤波前后的地震记录可以看出:地震资料中的有效信息明显增强,同相轴连续性得到改善。

关键词: 信号增强, 时频峰值滤波, 伪Wigner-Ville分布, 共炮点

Abstract: It is essential to seismic data processing that event is recovered clearly from noisy seismic data without losing energy of the signal. The time-frequency peak filtering (TFPF) based on pseudo Wigner-Ville distribution (WVD) was applied to process common shot point seismic record to eliminate the noise. This method achieved an unbiased estimation of the complex seismic record. The efficient information in seismic data was enhanced, and the random noise in the seismic data was removed, and the seismic event was recovered effectively. Compared the results from practical seismic record before and after TFPF processing, the effective information in seismic data was enhanced evidently, and the continuity of event was improved simultaneously.

Key words: enhancement of signal, time-frequency peak filter, pseudo WVD, common shot point record

中图分类号: 

  • P631.4
[1] 林红波, 李月, 徐学纯, 马海涛. 减小离散误差的时频峰值滤波算法[J]. J4, 2011, 41(2): 572-578.
[2] 杨宝俊,李月, 刘晓华,金雷,赵雪平,袁野,高颖. 改善地震勘探记录的4项技术[J]. J4, 2006, 36(05): 856-862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!