J4 ›› 2010, Vol. 40 ›› Issue (3): 657-664.

• 地质工程与环境工程 • 上一篇    下一篇

基于Markov状态切换的水质时序自回归预测模型

牛军宜|冯平   

  1. 天津大学 建筑工程学院,天津 300072
  • 收稿日期:2009-09-07 出版日期:2010-05-26 发布日期:2010-05-26
  • 作者简介:牛军宜(1978-), 男,河南宜阳人|博士研究生|主要从事水资源与水环境系统分析|E-mail:njy1230@126.com
  • 基金资助:

    国家自然科学基金项目(50879051)

Water Quality Time Series Prediction Based on Markov Switching AutoRegression Model

 NIU Jun-yi, FENG Ping   

  1. School of Civil Engineering, Tianjin University, Tianjin 300072, China
  • Received:2009-09-07 Online:2010-05-26 Published:2010-05-26

摘要:

水质时序演变特征的研究及预测对制定合理可行的水污染防控措施有重要意义,但水质时序的结构复杂性和非平稳性是采用自回归模型进行预测的瓶颈。针对上述问题,作者将马尔可夫状态切换理论(Markov Switching)应用于水质时序的自回归建模预测。马尔可夫状态切换-自回归模型(MS-AR)是一种研究具有变结构动力特征的时间序列分析方法,对异方差时序有较强的适应性。实例运用中,首先对果河桥断面的氨氮时序进行Box-Cox变换,然后运用MS-AR模型对其进行结构分析及预测。结果表明: MS-AR模型能有效识别出该水质时间序列演变过程中的两种结构模式,通过与经典自回归模型的预测精度相比,该方法的各项指标均优,也说明该方法在水质时间序列动态结构分析和预测方面有良好的应用前景。

关键词: 水质时序, 马尔可夫理论, 状态切换, Box-Cox变换, 自回归模型, 水污染

Abstract:

Evolution features research and multi-step prediction of water quality time series have important significance for making reasonable and applicable environmental protection measures. But the structural complexity and non-stationary is the bottleneck of auto-regressive model application to water quality series prediction. Focusing on these problems, Markov switching theory was introduced to combined with autoregressive model for water quality series simulating and predicting. Markov switching auto-regressive model(MS-AR) is suitable for the analysis of non-stationary time series with variable structure, and has a good adaptability to heteroscedastic time series. In the modeling the water quality time series of Guoheqiao section, the Box-Cox transformation was  used to transform the sample data to make it approximately Gaussian, and then MS-AR model was applied to the analysis and prediction of the water quality sequence. The result showed that MS-AR model identified the two evolution patterns of the series, and the prediction of MS-AR was better than the classical AR model, which indicates that MS-AR model has a good prospect in water quality sequence dynamic structure analysis and its prediction. This model can automatically identify the regime switching of a time series’ evolution process.

Key words: water quality time series, Markov theory, regime switching, Box-Cox transformation, autoregressive model, water pollution

中图分类号: 

  • X52
[1] 罗建男,卢文喜,康柱,宋晶,张一博. 表面活性剂强化含水层修复过程的全局灵敏度[J]. 吉林大学学报(地球科学版), 2013, 43(2): 558-0563.
[2] 赵勇胜. 地下水污染场地风险管理与修复技术筛选[J]. J4, 2012, 42(5): 1426-1433.
[3] 孙少晨, 魏怀斌, 肖伟华, 周祖昊, 王浩, 贺华翔. 冰封期水动力水质模型在松花江水污染事件中的应用[J]. J4, 2011, 41(5): 1548-1553.
[4] 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854.
[5] 李绪谦,潘晓峰,孙大志,商书波,李红艳,付向明,林景玉. 辽宁张士灌区细河流域地下水污染物空间分布特征及污染源判别分析[J]. J4, 2007, 37(4): 767-0772.
[6] 范 弢,杨世瑜. 云南丽江盆地地下水脆弱性评价[J]. J4, 2007, 37(3): 551-0556.
[7] 赵 勇 胜. 地下水污染场地污染的控制与修复[J]. J4, 2007, 37(2): 303-310.
[8] 杨悦所,Wang John L. 基于GIS的农业面源硝酸盐地下水污染动态风险评价[J]. J4, 2007, 37(2): 311-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!