吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 207-213.doi: 10.13278/j.cnki.jjuese.201501202

• 地质工程与环境工程 • 上一篇    下一篇

冻土水热耦合模型数值求解及结果检验

李杨1,2, 王清2, 王坛华2   

  1. 1. 福建工程学院土木工程学院, 福州 350014;
    2. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2014-04-27 发布日期:2015-01-26
  • 作者简介:李杨(1981), 女, 工程师, 博士, 主要从事工程地质、岩土工程, 地质灾害防治等方面的研究, E-mail:liyang513@foxmail.com
  • 基金资助:

    国家自然科学基金项目(40672180,41372267);高等学校博士学科点专项科研基金项目(20120061110054);福建工程学院科研启动基金项目(GY-Z12077)

Numerical Solution and Test of Results for a Hydrothermal Coupled Model About Frozen Soil

Li Yang1,2, Wang Qing2, Wang Tanhua2   

  1. 1. Department of Civil Engineering, Fujian University of Technology, Fuzhou 350014, China;
    2. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2014-04-27 Published:2015-01-26

摘要:

首先对作者所建立的基于多孔介质理论的季节冻土水热迁移耦合模型进行数值求解;对模型方程进行修正, 并给出了模型方程中参数的确定方法。然后以长春松原公路段土体为研究对象, 对实际工程中冻结情况下水分迁移的情况进行预测;给定模型边界条件对模型求解, 将结果与野外实际监测结果进行对比。温度变化对比数据表明, 模型可以较好地预测终值情况, 而中间过程的误差较大, 但是趋势基本一致。水分迁移方向及量的对比数据表明, 模型计算结果要小于实测结果, 但是整体上计算结果与实测结果的变化趋势较一致, 且同样是和最终值吻合较好, 误差最小。结果表明, 模型计算结果可较好地模拟参数最终值, 但存在一定误差。

关键词: 多孔介质, 水热迁移, 耦合模型, 温度, 含水率

Abstract:

A hydrothermal coupled model established previously by the author based on the theory of porous media seasonally frozen soil was solved numerically in this article. First, the model equations were corrected, and the method to determine parameters in equations was given. Then Changchun-Songyuan highway soil was chosen as the object for the study, and the case of frozen moisture migration can be predicted in the actual project. Model was solved under the given circumstances the model boundary conditions, and the model solution results were compared with actual field monitoring results. The comparative data of temperature gradient show that the model can predict the final value of the parameter, while the middle of the process error is large, but the same trend. The comparative data of direction and the amount of moisture migration indicates that the model results to be less than the measured results, but overall the same trend. And the same with temperature gradient that the final values agree well with the smallest error, an average of about 2%. The results show that the model can simulate calculated parameters for the final values, but there is an error, and the error is within an acceptable range.

Key words: porous media, hydrothermal transfer, coupling model, temperature, moisture content

中图分类号: 

  • TU443

[1] 朱志武, 宁建国, 马巍. 土体冻融过程中水、热、力三场耦合本构问题及数值分析[J]. 工程力学, 2007, 24(5):138-144. Zhu Zhiwu, Ning Jianguo, Ma Wei. Constitutive Model and Numerical Analysis for the Coupled Problem of Water, Temperature and Stress Fields in the Process of Soil Freeze-Thaw[J]. Engineering Mechanics, 2007, 24(5):138-144.

[2] 罗焕炎, 陈雨孙. 地下水运动的数值模拟[M]. 北京:中国建筑工业出版社, 1988. Luo Huanyan, Chen Yusun. Numerical Simulation of Groundwater Movement[M]. Beijing:China Building Industry Press, 1998.

[3] Bear J, Bechmat Y. Introduction to Modeling of Transport Phenomena in Porous Media[M].:Kluwer Academic Publishers, 1991.

[4] 林瑞泰. 多孔介质传质传热引论[M]. 北京:科学出版社, 1995. Lin Ruitai. Heat and Mass Transfer in Porous Media Introduction[M]. Beijing:Science Press, 1995.

[5] Philip J R, De Veries D A. Moisture Movement in Porous Material Under Temperature Gradient[J]. Trans Am Geophys Union, 1957, 38:222-232.

[6] Aboustit B L, Advani S H, Lee J K, et al. Finite Element Evaluation of Thermo-Elastic Consolidation[J]. Proc US Symp Rock Mech, 1978, 23:587-595.

[7] 周家作, 李东庆, 房建宏, 等. 开放系统下饱和正冻土热质迁移的数值分析[J]. 冰川冻土, 2011, 33(4):791-795. Zhou Jiazuo, Li Dongqing, Fang Jianhong, et al. Numerical Analysis of Heat and Mass Transfers in Saturated Freezing Soil in an Open System[J]. Journal of Glaciology and Geocryology, 2011, 33(4):791-795.

[8] 陈飞熊, 李宁, 程国栋. 饱和正冻土多孔多相介质的理论构架[J]. 岩土工程学报, 2002, 24(2):213-217. Chen Feixiong, Li Ning, Cheng Guodong. Theoretical Framework Freezing Soil Saturated Porous Media Multiphase[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2):213-217.

[9] 白冰, 刘大鹏. 非饱和介质中热能传输及水分迁移的数值积分解[J]. 岩土力学, 2006, 27(12):2085-2089. Bai Bing, Liu Dapeng. Numerical Integral Solutions of Heat Transfer and Moisture Transport in Unsaturated Porous Media[J]. Rock and Soil Mechanics, 2006, 27(12):2085-2089.

[10] 吴晓玲, 向小华, 王船海, 等. 季节冻土区融雪冻土水热耦合模型研究[J]. 水文, 2012(5):12-15. Wu Xiaoling, Xiang Xiaohua, Wang Chuanhai, et al. Numerical Modeling for Coupled Snowmelt and Frozen Soil in Seasonally Frozen Soil Region[J]. Journal of China Hydrology, 2012(5):12-15.

[11] 宿晓萍, 王清, 王文华, 等. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报:地球科学版, 2014, 44(4):1244-1253. Su Xiaoping, Wang Qing, Wang Wenhua, et al. Frost Resistance and Durability Mechanism of Concrete Under Saline-Alkali Condition in Seasonal Frozen Soil Area[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(4):1244-1253.

[12] 李杨.基于多孔介质理论的季节冻土水热迁移耦合模型推导[J]. 河北工程大学学报:自然科学版, 2012(3):11-14. Li Yang. Derivation of Water and Thermal Migration Coupled Model Based on Theory of Porous Media in Seasonal Frozen Soil[J]. Journal of Hebei University of Engineering:Natural Science Edition, 2012(3):11-14.

[13] 李杨. 季节冻土水分迁移模型研究[D]. 长春:吉林大学, 2008. Li Yang. A Study on the Moisture Content Migration Model of Seasonal Frozen Soil[D]. Changchun:Jilin University, 2008.

[1] 张波, 曹洪恺, 孙建孟, 张鹏云, 闫伟超. 稠油热采地层阵列感应测井响应特性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1277-1286.
[2] 李长雨, 马桂霞, 郝光, 徐亮. 季节冻土地区路基冷阻层温度场效应[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1174-1181.
[3] 袁利娟, 杨峰田. 北京迭断陷内蓟县系热储层温度分布特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 179-188.
[4] 张延军, 张通, 殷仁朝, 郑杰, 刘彤, 谢洋洋. 基于2 m测温法的地热异常区探测及地温预测[J]. 吉林大学学报(地球科学版), 2017, 47(1): 189-196.
[5] 毛毳, 陈勇, 周瑶琪, 葛云锦, 王有智, 周振柱. 改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1352-1364.
[6] 胡大千, 王岩泉, 沙茜, 王春光, 陈旭, 马瑞. 大兴安岭北部上古生界极低级变质温度——来自碳质物拉曼光谱的证据[J]. 吉林大学学报(地球科学版), 2015, 45(1): 188-197.
[7] 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594.
[8] 黄平华,韩素敏. 矿井底板破碎带温度场模型推导及模拟分析[J]. 吉林大学学报(地球科学版), 2014, 44(3): 969-976.
[9] 吴志伟,宋汉周. 由温度时序资料反演地下水流速的两种解析解及其比较[J]. 吉林大学学报(地球科学版), 2014, 44(2): 610-618.
[10] 唐菲, 徐涵秋. 城市不透水面与地表温度定量关系的遥感分析[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1987-1996.
[11] 何雨江,蔺文静,王贵玲. 利用TDR100系统原位监测深厚包气带水热动态[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1972-1979.
[12] 于子望,张延军,张庆,许天福. TOUGHREACT搭接FLAC3D算法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 199-206.
[13] 李文运, 崔亚莉, 苏晨, 张伟, 邵景力. 天津市地下水流-地面沉降耦合模型[J]. J4, 2012, 42(3): 805-813.
[14] 曾玉超, 苏正, 吴能友, 王晓星, 胡剑. 漳州地热田基岩裂隙水系统温度分布特征[J]. J4, 2012, 42(3): 814-820.
[15] 程东会, 王文科, 侯光才, 杨红斌, 李瑛, 张二勇. 毛乌素沙地植被与地下水关系[J]. J4, 2012, 42(1): 184-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!