吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 594-602.doi: 10.13278/j.cnki.jjuese.201602303
刘洋, 李炳秀, 刘财, 陈常乐, 杨学亭
Liu Yang, Li Bingxiu, Liu Cai, Chen Changle, Yang Xueting
摘要:
地震信号在地下传播时会受到地层吸收衰减的影响,从而降低了地震资料的分辨率。因此地震波吸收衰减补偿是地震资料处理中的一项重要环节。本文研究的地层吸收衰减补偿方法主要基于局部时频变换(LTFT),该方法能够调节选取谱分解的频率范围和频率采样间隔,解决了短时傅里叶变换固定时窗和小波系数无法提供波形频率的精确估计值问题,适用于非平稳地震信号的时频分析。在求取地层Q值的方法中,频谱比值法具有高效简单的特点,有着广泛的应用范围。本文假设地下介质为层状变Q模型,使用局部时频变换将信号转换为时频域,通过频谱比值法求出各层的Q值,最后根据Kolsky衰减模型来补偿地震信号。理论模型测试和实际资料处理的结果表明,本文提出的方法能够有效恢复衰减信号,提高地震资料的分辨率。
中图分类号:
[1] Hale D. An Inverse Q-Filter[R]. San Francisco:Stanford University, 1981:231-243.[2] Futterman W I. Dispersive Body Waves[J]. Geophy-sics Res, 1962, 67(4):5279-5291.[3] Bickel S H, Natarajan R R. Plane-Wave Q Deconvolution[J]. Geophysics, 1985, 50(9):1426-1439.[4] Hargreaves N D, Calvert A J. Inverse Q Filtering by Fourier Transform[J]. Geophysics, 1991, 56(4):519-527.[5] 裴江云, 何樵登. 基于Kjartansson模型的反Q滤波[J].地球物理学进展, 1994, 9(1):90-100. Pei Jiangyun, He Qiaodeng. Inverse Q Filtering According to Kjartansson Model[J]. Progress in Geophysics,1994, 9(1):90-100.[6] Wang Yanghua. A Stable and Efficient Approach of Inverse Q Filtering[J]. Geophysics, 2002, 67(2):657-663.[7] 刘财, 刘洋, 王典,等.一种频域吸收衰减补偿方法[J]. 石油物探, 2005, 44(2):116-118. Liu Cai, Liu Yang, Wang Dian, et al. A Method to Compensate Strata Absorption and Attenuation in Frequency Domain[J].Geophysical Prospecting for Petroleum, 2005, 44(2):116-118.[8] Wang Y H. Inverse Q-Filter for Seismic Resolution Enhancement[J]. Geophysics, 2006, 71(3):51-60.[9] Gladwin M T, Stacey F D. Anelastic Degradation of Acoustic Pulses in Rocks[J]. Phys Earth Plan Int, 1974, 8(4):332-336.[10] Jannsen D, Voss J, Theilen F. Comparison of Methods to Determine Q in Shallow Marine Sediments from Vertical Reflection Seismograms[J]. Geophysical Prospecting, 1985, 23(4), 479-497.[11] 王辉, 常旭, 刘尹克.时间域相邻道地震波衰减成像研究[J].地球物理学报,2001,44(3):396-403. Wang Hui, Chang Xu, Liu Yinke. Seismic Neighbo-ring Traces Attenuation Tomography in Time Domain[J]. Chinese Journal of Geophysics, 2001,44(3):396-403.[12] Bath M. Spectral Analysis in Geophysics[M]. New York:Elsevier,1974.[13] 冯晅, 张瑾, 刘财,等. 基于改进的Kolsky模型波场延拓公式的纵波Q值、横波Q值估计[J]. 吉林大学学报(地球科学版), 2014, 44(1):359-368. Feng Xuan, Zhang Jin, Liu Cai, et al. Estimation of P-and S-Wave Quality Factors Based on the Formula of the Wave-Field Continuation in Modified Kolsky Model[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1):359-368.[14] Tonn R. The Determination of the Seismic Quality Factor Q from VSP Data:A Comparison of Different Computational Methods[J]. Geophysical Prospecting, 1991, 39(1):1-27.[15] Tonn R. Comparison of Seven Methods for the Computation of Q[J]. Physics of the Earth and Planetary Interiors,1989,55(3):259-268.[16] Gabor D. Theory of Communication[J]. Journal of the Institution, 1946, 93(26):429-441.[17] Morlet J, Arens G, Fourgeau E, et al. Wave Propagation and Sampling Theory:Part I:Complex Signal and Scattering in Multilayered Media[J]. Geophy-sics, 1982, 47(2):203-221.[18] Stockwell R G, Mansinha L, Lowe R P. Localization of the Complex Spectrum:The S Transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4):998-1001.[19] Liu Yang,Fomel Sergey. Seismic Data Analysis Using Local Time-Frequency Decomposition[J]. Geophysical Prospecting,2013,61(3):516-525.[20] Kolsky H. The Propagation of Stress Pulses in Viscoelastic Solids[J]. Philosophical Magazine,1956,1(8):693-710.[21] Fomel S. Shaping Regularization in Geophysical-Estimation Problems[J]. Geophysics, 2007, 72(2):R29-R36.[22] Wang Y H. Seismic Inverse Q Filtering[M]. New York:Wiley-Black Well,2008:1-248. |
[1] | 吴娟, 陈小宏, 白敏. 黏滞声波高斯束叠前深度偏移[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1530-1538. |
|