吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (3): 736-748.doi: 10.13278/j.cnki.jjuese.201603111

• 地质与资源 • 上一篇    下一篇

浙江常山里山岭斑岩型铜矿床成岩时代及岩浆源区

王科强1,2,3, 张德会1,2, 朱玉娣4, 付芬1,2, 印贤波5, 王晨昇6   

  1. 1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
    2. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083;
    3. 北京东方燕京矿山工程设计有限责任公司, 北京 100070;
    4. 西南石油大学地球科学与技术学院, 成都 610500;
    5. 西藏金龙矿业股份有限公司, 拉萨 850000;
    6. 中国有色金属矿产地质调查中心, 北京 100012
  • 收稿日期:2015-10-12 出版日期:2016-05-26 发布日期:2016-05-26
  • 通讯作者: 张德会(1955-),男,教授,博士生导师,主要从事矿床地球化学和流体包裹体研究,E-mail:zhdehui@cugb.edu.cn E-mail:zhdehui@cugb.edu.cn
  • 作者简介:王科强(1967-),男,博士研究生,主要从事矿床学、成矿区划和地球化学研究,E-mail:wkq32639832@sina.com
  • 基金资助:

    国土资源部项目(201411024);国家自然科学基金项目(41373048)

Petrogenic Age and Magma Source of Granite Porphyry in Lishanling Porphyry Cu Deposit in Changshan Area, Zhejiang Province

Wang Keqiang1,2,3, Zhang Dehui1,2, Zhu Yudi4, Fu Fen1,2, Yin Xianbo5, Wang Chensheng6   

  1. 1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
    3. Beijing Oriental Yanjing Mining Design Co., Ltd., Beijing 100070, China;
    4. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    5. Tibet Jinlong Incorporated Co., Ltd., Lasa 850000, China;
    6. China Non-Ferrous Metal Resource Geological Survey, Beijing 100012, China
  • Received:2015-10-12 Online:2016-05-26 Published:2016-05-26
  • Supported by:

    Supported by the Ministry of Land and Resources(201411024) and National Natural Science Founda of China(41373048)

摘要:

浙江是非金属矿大省,金属矿特别是斑岩型矿床的研究亟待进行。本文以里山岭斑岩型铜矿床为研究对象,首次采用SHRIMP U-Pb对该岩体侵位时代进行精确限定,利用Sr-Nd同位素示踪含矿岩体的岩浆源区,不仅为浙江斑岩型矿床成因的深入研究增加了新资料,还对浙西下一步找矿勘探具有重要意义。浙江常山里山岭斑岩型铜矿床位于钦杭成矿带东段,受球川-萧山深断裂带控制。该矿床铜矿化主要赋存于花岗斑岩体中。含矿花岗斑岩为高硅、富碱、高分异、过铝质S型花岗岩。岩体的稀土分布型式右倾,整体呈“海鸥型”,有明显负Eu异常。岩石亏损Sr、Ba等大离子亲石元素,富集Nb、Ta、Zr、Hf、Ti、Y、Yb等高场强元素。含矿花岗斑岩锆石SHRIMP U-Pb年龄为(131±2)Ma,为早白垩世构造-岩浆活动的产物,形成于中国东部岩石圈减薄背景。岩浆岩(87Sr/86Sr)i值为0.679 95~0.721 08,平均0.701 14。εNdt)值为-8.4~-5.8,平均-6.7。Sr-Nd同位素特征表明含矿花岗斑岩源区主要为地壳,兼有少量地幔物质的混染。

关键词: 斑岩型铜矿, 花岗斑岩, Sr-Nd同位素, SHRIMP锆石U-Pb年龄, 浙江常山里山岭

Abstract:

Zhejiang is well known for its abundant non-metallic mineral resource, whereas is lack of research data on metallic deposits, especially on the porphyry deposits. The Lishanling porphyry Cu deposit has been chosen as a study object, the SHRIMP zircon U-Pb dating is applied to restrict the emplacement age of Lishanling granite porphyry. Sr-Nd isotope tracing is completed to study the origin of granite porphyry. The research result not only can enhance the study on ore genesis of porphyry deposits in Zhejiang, but also is vital important for further ore exploration in western Zhejiang. The Lishanling porphyry Cu deposit is located in the east of Qinzhou-Hangzhou suture zone, and the copper mineralization occurs within the granitic porphyry. The ore-bearing porphyry is classified as the S-type granite with high silica, alkaili content, strong fractionation, and peraluminous characteristics. In the chondrite-normalized diagram, the REE patterns lean to the right, appears as a seagulls, the enrichment of LREE and negative Eu anomalies are abvious. The porphyry is rich in Nb, Ta, Zr, Hf, Ti, Y, Yb; and depleted of LILEs such as Sr and Ba. Zircon SHRIMP U-Pb age of ore-bearing granite porphyry is (131±2) Ma, which proves that the porphyry was resulted from the Early Cretaceous tectonic-magmatic activity and formed in the tectonic background of lithospheric thinning in Eastern China. The ore-bearing porphyry has relative high value of ISr(0.679 95 to 0.721 08) and low εNd(t) value (-8.4 to -5.8), with the average value of 0.701 14 and -6.7 respectively. The ore-bearing granite porphyry mainly origin from crustal rock with a small amount of mantle contamination, which can be proved by the Sr-Nd isotopic characteristics.

Key words: porphyry Cu deposit, granite porphyry, Sr-Nd isotopes, zircon SHRIMP U-Pb age, Lishanling in Changshan area of Zhejinag Province

中图分类号: 

  • P597

[1] 高林志, 张恒, 丁孝忠,等. 江山-绍兴断裂带构造格局的新元古代SHRIMP锆石U-Pb年龄证据[J]. 地质通报, 2014, 33(6):763-775. Gao Linzhi, Zhang Heng, Ding Xiaozhong, et al. SHRIMP Zircon U-Pb Dating of the Jiangshan-Shaoxing Fault Zone in Zhejiang and Jiangxi[J]. Geological Bulletin of China, 2014, 33(6):763-775.

[2] 邓家瑞, 张志平. 赣杭构造带区域大地构造背景的探讨[J]. 铀矿地质, 1999, 15(2):71-76. Deng Jiarui, Zhang Zhiping. Discussion on Regional Geotectonic Setting of Gan-Hang Tectonic Belt[J]. Uranium Geology, 1999, 15(2):71-76.

[3] 舒良书, 周新民. 中国东南部晚中生代构造格架[J]. 地质论评, 2002, 48(3):249-260. Shu Liangshu, Zhou Xinmin. Late Mesozoic Tectonism of Southeast China[J]. Geological Review, 2002, 48(3):249-260.

[4] 余心起, 张德会, 颜铁增,等. 浙西北及江绍断裂带分别发现早古生代和晚古生代岩浆活动[J]. 地质通报, 2013, 32(10):1558-1565. Yu Xinqi, Zhang Dehui, Yan Tiezeng, et al. The Discovery of the Early and Late Paleozoic Magmatic Activities in Northwest Zhejiang Province, Southeast China[J]. Geological Bulletin of China, 2013, 32(10):1558-1565.

[5] 徐德明, 蔺志永, 龙文国, 等. 钦杭成矿带的研究历史和现状[J]. 华南地质与矿产, 2012, 28(4):277-289. Xu Deming, Lin Zhiyong, Long Wenguo, et al. Research History and Current Situation of Qinzhou-Hangzhou Metallogenic Belt, South Chhina[J]. Geology and Mineral Resources of South China, 2012,28(4):277-289.

[6] 毛景文, 陈懋弘, 袁顺达,等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5):636-658. Mao Jingwen, Chen Maohong, Yuan Shunda, et al. Geological Characteristics of the Qinhang Metallogenic Belt in South China and Spatial Temporal Distribution Regularity of Mineral Deposits[J]. Acta Geologica Sinica, 2011,85(5):636-658.

[7] 浙江金华地质大队. 浙江开化常山一带斑岩体特征与铜钼矿化关系初步探讨[R].金华:浙江金华第三地质大队, 1982. Jinhua Geological Survey of Zhejiang. Preliminary Discussion on Characteristics of Porphyries and It's Relationships with Cu-Mo Mineralization in Kaihua to Changshan, Zhejiang Province[R]. Jinhua:The Third Geological Survey of Jinhua, Zhejiang Province, 1982.

[8] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb Ages of Early Cambrian Time Scale[J]. J Geol Soc, 1992, 149:171-184.

[9] Ludwig K R. User's Manual for Isoplot/Ex (Rev.2.49):A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkely Geochronology Center, Special Publica-tion, 2001:55.

[10] Maniar P D,Piccoli P M.Tectonic Discrimination of Gra-nitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.

[11] Le Maitre R W. Igneous Rocks:A Classification and Glossary of Terms[M]. Cambridge:Cambridge University Press, 2002:107.

[12] Middlemost E A K. Towards a Comprehensive Classi-fication of Igneous Rocks and Magmas[J]. Earth-Science Reviews, 1991, 31(2):73-87.

[13] Boynton W V. Geochemistry of the Rare Earth Elements:Meteorite Studies[C]//Hendserson P. Rare Earth Element Geochemistry. Amsterdam:Elservier Science Publishers, 1984:63-114.

[14] Sun S S,McDonough W F. Chemical and Isotopic Sys-tematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42:313-345.

[15] 张宏飞, 高山. 地球化学[M]. 北京:地质出版社, 2013:133. Zhang Hongfei, Gao Shan. Geochemistry[M]. Beijing:Geological Publishing House, 2013:133.

[16] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 33(3):161-174. Li Changmin. A Review on the Minerageny and Situ Micro-Analytical Dating Techniques of Zircons[J]. Geological Survey and Research, 2009, 33(3):161-174.

[17] 郭春丽, 王登红, 陈毓川,等. 川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄、元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义[J]. 岩石学报, 2007, 23(10):2457-2470. Guo Chunli, Wang Denghong, Chen Yuchuan, et al. SHRIMP U-Pb Zircon Ages and Major Element, Trace Element and Nd-Sr Isotope Geochemical Studies of a Neoproterozoic Granitic Complex in Western Sichuan:Petrogenesis and Tectonic Significance[J]. Acta Petrologica Sinica, 2007, 23(10):2457-2470.

[18] 龚日祥, 卢成忠. 浙西晚中生代富碱高钾花岗岩类岩石地球化学特征及构造意义[J]. 岩石学报, 2008, 24(10):2343-2351. Gong Rixiang, Lu Chengzhong. Petrogeochemistry of Late Mesozoic Alkali-Rich Postassium-High Granitoid in Western Zhejiang and Tectonic Significance[J]. Acta Petrologica Sinica, 2008, 24(10):2343-2351.

[19] 沈渭洲, 凌洪飞, 王德滋,等. 浙江省中生代火成岩的Nd-Sr同位素研究[J]. 地质科学, 1999, 34(2):223-232. Shen Weizhou, Ling Hongfei, Wang Dezi, et al. Study on Nd-Sr Isotopes of Mesozoic Igneous Rocks in Zhejiang, China[J]. Scientia Geologica Sinica, 1999,34(2):223-232.

[20] 李兆鼐, 权恒, 李之彤,等. 中国东部中新生代火成岩及其深部过程[M]. 北京:地质出版社, 2003. Li Zhaonai, Quan Heng, Li Zhitong, et al. Cenozoic Igneous Rocks in the Eastern Part of China and Its Deep Process[M]. Beijing:Geological Publishing House, 2003.

[21] Frost B R, Barnes C G, Collins W J,et al. A Geo-chemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048.

[22] Frost C D, Frost B R. On Ferroan (A-Type) Grani-toids:Their Compositional Variability and Modes of Origin[J]. Journal of Petrology, 2011, 52:39-53.

[23] Wolf M B, London D. Apatite Dissolution into Peralu-minous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanism[J]. Geochim Cosmochim Acta, 1994, 58:412-414.

[24] 李献华, 李武显, 李正祥. 再论华南燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9):981-992. Li Xianhua, Li Wuxian, Li Zhengxiang. The Genetic Types and Tectonic Significance of the Early Yanshan Granite in South China[J]. Chinese Science Bulletin, 2007, 52(9):981-992.

[25] 王强, 赵振华, 简平,等. 德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学[J]. 岩石学报, 2004, 20(2):315-338. Wang Qiang, Zhao Zhenhua, Jian Ping, et al. SHRIMP Zircon Geochronology and Nd-Sr Isotopic Geochemistry of the Dexing Granodiorite Porphyries[J]. Acta Petrologica Sinica,2004, 20(2):315-338.

[26] 徐克勤, 胡受奚, 孙明志,等. 论花岗岩的成因系列:以华南中生代花岗岩为例[J]. 地质学报, 1983(2):107-118. Xu Keqin, Hu Shouxi, Sun Mingzhi, et al. The Genetic Series of Granites, as Exemplified by the Mesozoic Granites of South China[J]. Acta Geologica Sinica, 1983(2):107-118.

[27] Chappell B W, White A J R. Two Contrasting Granite Types[J]. Pacific Geology, 1974, 8:173-174.

[28] Chappell B W, White A J R. I-Type and S-Type Granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83:1-26.

[29] Sillitoe R H. A Plate Tectonic Model for the Origin of Porphyry Copper Deposits[J]. Economic Geology, 1972, 67:184-197.

[30] Burnham C W. Magmas and Hydrothermal Fluids[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York:Wiley, 1979:71-136.

[31] 赵元艺, 王江朋, 赵广江,等. 黑龙江多宝山矿集区成矿规律与找矿方向[J]. 吉林大学学报(地球科学版), 2011, 41(6):1676-1688. Zhao Yuanyi, Wang Jiangpeng, Zhao Guangjiang, et al. Metallogenic Regularity and Prospecting Direction of Duobaoshan Ore Field, Heilongjiang Province, China.[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6):1676-1688.

[32] 陈宣华, 陈正乐, 韩淑琴,等. 中亚巴尔喀什成矿带晚古生代岩浆活动与斑岩铜矿成矿时代[J]. 吉林大学学报(地球科学版), 2013, 43(3):734-747. Chen Xuanhua, Chen Zhengle, Han Shuqin, et al. Late Paleozoic Magmatism and Porphyry Copper Metallo-genesis in Balksh Metallogenic Zone, Kazakhstan, Central Asia[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3):734-747.

[33] HSU K J. Mélanges and the Mélange Tectonics of Tai-wan[J]. Proceedings of the Geological Society of China, 1988, 31:87-92.

[34] 谢窦克. 皖南元古宙基底两套绿岩特征及地壳演化[J]. 火山地质与矿产, 1996, 17(3/4):23-41. Xie Douke. Crust Evolution and the Character of Two Greenstone Suites in Proterozoic Basement South Anhui[J].Volcanology and Mineral Resources, 1996, 17(3/4):23-41.

[35] 李子颖, 李秀珍, 林锦荣. 试论华南中新生代地幔柱构造、铀成矿作用及其找矿方向[J]. 铀矿地质, 1999, 15(1):9-18. Li Ziying, Li Xiuzhen, Lin Jinrong. On the Meso-Cenozoic Mantle Plume Tectonics, Its Relationship to Uranium Metallogenesis and Prospecting Directions in South China[J]. Uranium Geology, 1999, 15(1):9-18.

[36] 毛建仁, 陶奎元, 邢光福,等. 中国南方新生代地幔柱活动的地球化学证据[J]. 地质论评, 1999, 45(增刊):698-702. Mao Jianren, Tao Kuiyuan, Xing Guangfu, et al. Geochemical Evidence for Cenozoic Mantle Plume in South China[J]. Geological Review, 1999, 45(Sup.):698-702.

[37] Gilder S A, Gill J,Coe R S,et al. Iostopic and Paleo-magnetic Constrains on the Mesozoic Tectonic Evolution of South China[J]. Journal of Geophysical Research, 1996, 101:16137-16154.

[38] Jahn B M, Chen P Y, Yan T P. Rb-Sr Ages of Granitic Rocks in Southeastern China and Their Tectonic Significance[J]. Bulletin of the Geological Society of America, 1976, 86:763-776.

[39] 邓晋福, 邱瑞照, 肖庆辉,等. 对流地幔输入大陆与大陆成矿作用[J]. 矿床地质, 2004, 23(增刊1):24-31. Deng Jinfu, Qiu Ruizhao, Xiao Qinghui, et al. Input of Material and Heat from Convective Mantle into Continent and Continental Metallogenesis[J]. Mineral Deposits, 2004, 23(Sup.1):24-31.

[1] 杨启军, 秦亚, 王泰山, 张青伟. 广西佛子冲矿田二长花岗斑岩的年代学、地球化学特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(3): 760-774.
[2] 杨梅, 孙景贵, 王忠禹, 赵世峰, 刘晨, 冯洋洋, 任泽宁. 大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 477-496.
[3] 姚磊, 吕志成, 于晓飞, 庞振山, 蔡煜琦, 刘鹏, 刘长城, 王凤兰. 青海祁漫塔格地区虎头崖矿床Ⅵ矿带花岗岩的成岩时代、地球化学特征和成因[J]. 吉林大学学报(地球科学版), 2015, 45(3): 743-758.
[4] 孙洪涛,王秋玲,雷如雄,陈世忠,陈刚,吴昌志. 闽中裂谷带梅仙铅锌矿区花岗斑岩的LA-ICP-MS锆石U-Pb年龄、成因及成矿效应[J]. 吉林大学学报(地球科学版), 2014, 44(2): 527-539.
[5] 彭翼,何玉良,曾涛,钟江文,许国丽,苏小岩,谌军,彭松民,李震. 河南省Mo矿区域成矿模式与综合信息预测模型[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1262-1275.
[6] 杨毓红,刘燊,胡瑞忠,冯彩霞,冯光英,杨朝贵,齐有强. 承德三岔口基性岩墙地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1796-1805.
[7] 曹锐, 木合塔尔·扎日, 陈斌, 李德威, 曹福根, 刘德民. 东天山板块缝合带石炭纪火山岩地球化学和Sr-Nd同位素特征及其大地构造意义[J]. J4, 2012, 42(2): 400-409.
[8] 路彦明, 张玉杰, 潘懋, 刘翼飞, 徐斌, 朝银银, 张栋, 范俊杰, 陈晓吾, 潘爱军. 东准噶尔黄羊山西金矿区含矿花岗斑岩锆石U-Pb定年及地质意义[J]. J4, 2010, 40(4): 852-858.
[9] 鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. J4, 2007, 37(1): 15-0023.
[10] 赵全国,许文良,靳 克,裴福萍. 延边地区中生代火山岩的岩浆源区:来自Sr-Nd同位素和深源捕虏体(晶)的证据[J]. J4, 2005, 35(04): 416-0422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!