吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 477-496.doi: 10.13278/j.cnki.jjuese.201702113

• 地质与资源 • 上一篇    下一篇

大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征

杨梅1, 孙景贵1, 王忠禹2, 赵世峰3, 刘晨1, 冯洋洋1, 任泽宁1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 宁夏回族自治区地质调查院, 银川 750021;
    3. 华北地质勘查局综合普查大队, 北京 101601
  • 收稿日期:2016-11-23 出版日期:2017-03-26 发布日期:2017-03-26
  • 通讯作者: 孙景贵(1961-),男,教授,博士生导师,主要从事地球化学及热液矿床的研究与教学工作,E-mail:sunjinggui@jlu.edu.cn E-mail:sunjinggui@jlu.edu.cn
  • 作者简介:杨梅(1991-),女,研究生,主要从事矿物学、岩石学、矿床学方面的研究,E-mail:1159164808@qq.com
  • 基金资助:
    国家自然科学基金重点项目(41390444);中国地质调查局项目(12120113079402,DD20160344)

Petrogenesis and Geological Significance of the Alkali-Rich Granite Porphyry in the Jiawula Cu-Ag-Pb-Zn Deposit in the Western Slope of the Great Xing'an Range: Zircon U-Pb Dating and Geochemical Characteristics

Yang Mei1, Sun Jinggui1, Wang Zhongyu2, Zhao Shifeng3, Liu Chen1, Feng Yangyang1, Ren Zening1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Ningxia Institute of Geological Survey, Yinchuan 750021, China;
    3. Exporation Unit of North China Geological Exploration Bureau, Beijing 101601, China
  • Received:2016-11-23 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the Key Program of National Natural Science Foundation of China(41390444)and Geological Survey Projects of China Ceological Survey(12120113079402, DD20160344)

摘要: 甲乌拉铜银铅锌矿床是大兴安岭西坡得尔布干铜(钼)-银铅锌成矿带内大型铅锌银矿床之一,长期以来被认为是与火山、次火山热液作用有关的浅成热液矿床;然而近期的研究显示,其成矿可能与深部细脉浸染型铜矿化有着密切的成因联系。为此,我们在野外调研的基础上,开展了与细脉浸染型铜矿化有关的富碱花岗斑岩的年代学和地球化学研究工作。实验结果揭示:花岗斑岩的w(SiO2)为71.59%~72.36%,w(TiO2)为0.46%~0.58%,w(Al2O3)为15.45%~15.92%,w(Fe2O3)为0.74%~0.90%,w(FeO)为1.67%~1.96%,w(MgO)为0.55%~0.89%,w(Na2O+K2O)为9.01%~9.91%,K2O/Na2O值为1.37~2.15,里特曼指数(σ)为2.77~3.43,碱度指数(AR)为3.13~3.96,指示该类岩石为钾玄岩系列、高钾质、过铝质的A型富碱花岗斑岩;稀土元素总量(∑REE)为(350.11~408.80)×10-6,轻重稀土比值(∑LREE/∑HREE)为11.25~11.44,δ Eu主要集中在0.38~0.44,具有较强的轻重稀土分馏和明显负铕异常、强烈亏损相容元素(Ni、Co、Cr、V、Yb、Eu等)、富集不相容元素(Cs、Rb、Pb、U、Th、Zr、Hf等)、相对亏损Li、Sr等不相容元素以及持有较高的Rb/Sr(0.93~1.31)、Zr/Hf(29.38~35.61)值等特征,揭示原始岩浆来源于以CO2为主的流体交代下地壳部分重熔或以H2O为主的流体交代下地壳部分重熔,岩浆作用过程受到了强烈的碳酸盐混染,并具有提供铜银铅锌成矿流体的属性。鉴于所获该类岩石具有岩浆和热液锆石共伴生的特点,且岩浆锆石的206Pb/238U年龄加权平均值为(146.4±1.6)Ma(MSWD=1.30,n=12)、热液锆石206Pb/238U年龄加权平均值为(143.1±3.9)Ma(MSWD=0.56,n=5),结合前人的研究成果,得出甲乌拉矿床成矿发生在早白垩世初期,与成矿密切的岩浆作用发生在晚侏罗世末,并认证甲乌拉矿床为斑岩型铜-浅成热液铜银铅锌成矿系统;成岩成矿地球动力学背景适值古太平洋板块向欧亚板块俯冲的大陆内部挤压向伸展转换的构造环境,或蒙古—鄂霍茨克洋闭合后造山带碰撞伸展的环境。

关键词: 年代学, 地球化学, 地球动力学, 富碱花岗斑岩, 甲乌拉铜银铅锌矿床, 大兴安岭西坡

Abstract: The Jiawula deposit is one of the large-scale Pb-Zn-Ag deposits in Derbugan Cu(Mo)-Ag-Pb-Zn metallogenic belt in the western slope of the Great Xing'an Range,and has been still considered as an epithermal deposit related to volcanic-subvolcanic hydrothermal. Recent researches show that the mineralization has closely genetic association with the fine vein and disseminated Cu mineralization in the deep. The geochronology and geochemistry researches have been carried out on the ore-hosting granite porphyry associated with the fine vein and disseminated Cu mineralization. The experimental results show that the granite porphyry has the w(SiO2) content ranging from 71.59% to 72.36%,w(TiO2) from 0.46% to 0.58%,w(Al2O3) from 15.45% to 15.92%,w(Fe2O3) from 0.74% to 0.90%,w(FeO) from 1.67% to 1.96%,w(MgO) from 0.55% to 0.89%,w(Na2O+K2O) from 9.01% to 9.91%,w(K2O/Na2O) from 1.37 to 2.15,rittmann index(σ) from 2.77 to 3.43,and alkalinity index(AR) from 3.13 to 3.96. The major element composition indicate that the rock belongs to shoshonite series,high potassium,peraluminous A type alkali-rich granite granite porphyry. The total amount of rare earth elements(∑REE) changes from 350.11×10-6 to 408.80×10-6,the ratio of light and heavy rare earth(∑LREE/∑HREE) varies from 11.25 to 11.44,and value of δ Eu mainly ranges from 0.38 to 0.44. These granite porphyry samples also have such geochemical characteristics as stronger fractionation of light and heavy rare earth, obvious negative Eu anomaly, strong depletion of compatible elements(Ni,Co,Cr,V,Yb,Eu,etc.),enrichment in incompatible elements(Cs,Rb,Pb,U,Th,Zr,Hf,etc.),relative depletion of Li,Sr and other incompatible elements, higher ratio values of Rb/Sr(0.93 to 1.31) and Zr/Hf(29.38 to 35.61). According to data mentioned above, it can be concluded that the original magma of the granite porphyry was derived from the partial remelting of lower crustal layer metasomatized by the fluid dominated with CO2 or H2O,and the magmatic process were suffered from strong hybridization with carbonate,which is favorable for ore-forming fluid of Cu-Ag-Pb-Zn mineralization. Considering the facts that there are both magmatic and hydrothermal zircon grains in the granite porphyry samples, and the weighted average of magmatic zircon 206Pb/238U age is (146.4±1.6)Ma(MSWD=1.30,n=12) and the weighted average of hydrothermal zircon 206Pb/238U age is(143.1± 3.9)Ma(MSWD=0.56,n=5),such conclusions can be drawn as followings. The first is that the Jiawula deposit formed at the initial stage of Early Cretaceous,and the magmatism closely related to the mineralization occurred at the end of Later Jurassic. The second is that the Jiawula deposit belongs to the porphyry Cu-epithermal Cu-Ag-Pb-Zn metallogenic system. The third is that the geodynamic background of diagenesis and metallogenesis was either conversion from extrusion to extension related to the subduction of the Paleo Pacific plate to the Eurasian plate,or extension stage after the collision associated with the closure of the Mongolia-Okhotsk ocean.

Key words: geochronology, geochemistry, geodynamics, alkali-rich granite porphyry, Jiawula Cu-Ag-Pb-Zn deposit, western slope of the Great Xing'an Range

中图分类号: 

  • P618.4
[1] 赵一鸣,张德全. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M]. 北京:地震出版社,1997:8-156. Zhao Yiming,Zhang Dequan. Metallogeny and Prospective Evaluation of Copper-Polymetallic Deposits in the Da Hinggan Mountains and Its Adjacent Regions[M]. Beijing:Seismological Press,1997:8-156.
[2] Hu Shaokang,Yan Hongquan,Ye Mao,et al. Meta-llogenic Focus-Area and Superlarge Mineral Deposits in the Bordering Zones Between China,Russia and Mongolia[J]. Science China:Series D:Earth Sciences,1998,28:43-48.
[3] 向伟东,胡绍康,闫鸿铨,等. 大兴安岭西坡及邻区银铅锌矿床成矿作用若干问题的讨论[J]. 铀矿地质,1998,14(6):344-351. Xiang Weidong,Hu Shaokuang,Yan Hongquan,et al. Main Charateristics of Ag-Pb-Zn Deposits and Discussion on Their Mineralization on the Western Slope of the Great Hinggan Mountains,NE China and Neighbouring Area[J]. Uranium Geology,1998,14(6):344-351.
[4] 王晰,段明新,任云生,等. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版),2016,46(5):1354-1367. Wang Xi,Duan Mingxin,Ren Yunsheng,et al. Characteristics of Fluid Inclusions and Mineralization Age of Badaguan Cu-Mo Deposit in Erguna Area,Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition),2016,46(5):1354-1367.
[5] 明珠,孙景贵,闫佳,等. 内蒙古东部得耳布尔铅锌矿床安山岩的形成环境和岩浆热液演化史:锆石U-Pb定年[J]. 世界地质,2015,34(3):590-598. Ming Zhu,Sun Jinggui,Yan Jia,et al. Forming Environment and Magmatic-Hydrothermal Evolution History of Andesite in Deerbuer Lead-Zinc Deposit of Eastern Inner Mongolia:Zircon U-Pb Dating[J]. Global Geology,2015,34(3):590-598.
[6] Yan Jia,Sun Jinggui,Zhao Shifeng,et al. LA-ICP-MS Zircon U-Pb Age of Rhyolitic Lithic-Cystal Tuffs in Erdaohezi Lead-Zinc Deposit,Inner Mongolia[J]. Global Geology,2015,18(4):213-220.
[7] 武广,糜梅,高峰军,等. 满洲里地区银铅锌矿床成矿流体特征及矿床成因[J]. 地学前缘,2010,17(2):239-255. Wu Guang,Mi Mei,Gao Fengjun,et al. Ore-Forming Fluid Characteristics and Genesis of Silver-Lead-Zinc Deposits in the Manzhouli Area,Inner Mongolia,China[J]. Earth Science Frontiers,2010,17(2):239-255.
[8] 葛文春,吴福元,周长勇,等. 兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J]. 科学通报,2007,52(20):2407-2417. Ge Wenchun,Wu Fuyuan,Zhou Changyong,et al. The Metallogenic Epoch and Geodynamic Significance of Porphyry Cu-Mo Deposits in the Eastern of Xing'an-Mongolia Orogenic Belt[J]. Chinese Science Bulletin,2007,52(20):2407-2417.
[9] 崔芳华,郑长青,丁雪,等. 内蒙古额尔古纳八大关牧场"佳疙瘩组"变质岩系原岩研究[J]. 吉林大学学报(地球科学版),2014,44(1):198-212. Cui Fanghua,Zheng Changqing,Ding Xue,et al. Protoliths of the Metamorphic Rock Series of ‘Jiageda Formation’ in the Badaguan Area of Eergu'na,Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition),2014,44(1):198-212.
[10] Gantumur H,Batulzii D,Wang Lijun,et al. Tsav:A Shoshonite-Hosted Intermediale Sulfidation Epithermal Ag-Pb-Zn Deposits,Eastern Mongolia[M]. Berlin:Springer Berlin Heidelberg,2005:389-392.
[11] 佘宏全,李进文,向安平,等. 大兴安岭中北段原岩锆石U-Pb测年及其区域构造演化关系[J]. 岩石学报,2012,28(2):571-594. She Hongquan,Li Jinwen,Xiang Anping,et al. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxing'anling and Its Implications to Geoteconic Evolution[J]. Acta Petrologica Sinica,2012,28(2):571-594.
[12] 李进文,梁玉伟,王向阳,等. 内蒙古二道河子铅锌矿成因研究[J]. 吉林大学学报(地球科学版), 2011,41(6):1745-1754. Li Jinwen,Liang Yuwei,Wang Xiangyang,et al. The Origin of the Erdaohezi Lead-Zinc Deposit,Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition),2011,41(6):1745-1754.
[13] 张斌,李进文,张德全,等. 内蒙古海拉尔盆地东珺铅锌银矿床地球化学特征[J]. 地质论评,2011,57(2):253-260. Zhang Bin,Li Jinwen,Zhang Dequan,et al. Geochemic Features of Dongjun Lead-Zinc-Sliver Deposit,Hailar Basin,Inner Mongolia[J]. Geological Review,2011,57(2):253-260.
[14] 陈祥,李鹤年,段国正. 内蒙古额仁陶勒盖花岗岩成因与银矿床的形成[J]. 矿产与地质,1997,11(2):91-98. Chen Xiang,Li Henian,Duan Guozheng. Origin of the Erentaolegai Granite and Its Relations to Silver Deposit,Inner Monguolia[J]. Mineral Resources and Geology,1997,11(2):91-98.
[15] 耿文辉. 中国东部中生代次火山岩型铜银多金属矿床地质特征及找矿评价标志[D]. 成都:成都理工大学,2005. Geng Wenhui. Geology and Prospecting Indicators for Subvolcanic Cu-Ag Poly Metallic Deposits in the Mesozoic Terrestrial Volcanic Region of East China[D]. Chengdu:Chengdu University of Technology,2005.
[16] 杨竞红. 内蒙额尔古纳-呼伦多金属成矿带的稳定同位素研究[J]. 矿产与勘查,1991,3:50-56. Yang Jinghong. Stable Isotope Research of Eergu'na-Hulun Polymetallic Metallogenic Belt,Inner Mongolia[J]. Minerals and Exploration,1991,3:50-56.
[17] Qin Kezhang,Li H M,Ishihara S. Intrusive and Mine-ralization Ages of Wunugetushan Porphyry Cu-Mo Deposit,NE-China:Evidence from Single Grain Zircon U-Pb,Rb-Sr Isochron and K-Ar Ages[J]. Resource Geology,1997,47(5):293-298.
[18] 潘龙驹,孙恩守. 内蒙古甲乌拉银铅锌矿床地质特征[J].矿床地质,1992,11(1):45-53. Pan Longju,Sun Enshou. Geological Characteristics of the Jiawula Silver-Lead-Zinc Deposit,Inner Mongolia[J]. Mineral Deposits,1992,11(1):45-53.
[19] 许立权,刘翠,邓晋福,等. 内蒙古额仁陶勒盖银矿区火成岩岩石地球化学特征及锆石SHRIMP U-Pb同位素定年[J]. 岩石学报,2014,3(11):3203-3212. Xu Liquan,Liu Cui,Deng Jinfu,et al. Geochemical Characteristics and Zircon U-Pb SHRIMP Age of Igneous Rocks in Erentaolegai Silver Deposit,Inner Mongolia[J]. Acta Petrologica Sinica,2014,3(11):3203-3212.
[20] Jahn B M,Griffin W L,Windley B F. Continental Growth in the Phanerozoic:Evidence from Central Asian[J]. Tectonophysics,2000,328:1-227.
[21] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,16(49):1589-1604. Wu Yuanbao,Zheng Yongfei. Genetic Mineralogy of Zircon and Its Constraints on the Interpretation of U-Pb Age[J]. Chinese Science Bulletin,2004,16(49):1589-1604.
[22] Hoskin P W O,Black L P. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon[J]. Journal of Metamorphic Geology,2000,18:423-439.
[23] Peccerillo R,Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey[J]. Contributions to Mineralogy & Petrology,1976,58(1):63-81.
[24] Sun S S,McDonough W F. Chemical and Iostopic Systematies of Oceanic Basalts:Implication for Mantle Composition and Processes[J]. Geological Society London Special Publications,1989,42(1):313-345.
[25] Chappell B W,White A J R. I-,and S-Type Granites in the Lachlan Fold Belt[J]. Earth Sciece,1992,83:1-26.
[26] Chappell B W,White A J R. Two Contrasting Granite Types:25 Years Later[J]. Australian Journal of Earth Sciences,2001,48(1):489-499.
[27] King P L,White A J R,Chappell B W,et al. Cha-racterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt,Southeastern Australia[J]. Journal of Petrology,1997,38(3):371-391.
[28] Wu Fuyuan,Jahn Borming,Simon A,et al. Highly Fractionated I-Type Granites in NE China(I):Geochronology and Petrogeness[J]. Lithos,2003,66(3/4):241-273.
[29] Eby G N. Chemical Subdivision of the A-type Gra-nitoids:Petrogenetic and Tectonic Implications[J]. Geology,1992,20(7):641-644.
[30] 白春礼. 高等地球化学[M]. 北京:科学出版社,2000:159-201. Bai Chunli. Advanced Geochemistry[M]. Beijing:Science Press,2000:159-201.
[31] Pearce J A. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins[J]. Journal of the Electrochemical Society,1983,147(6):2162-2173.
[32] Pearce J A,Peate D W. Tectonic Implications of the Composition of Volcanic Arc Magmas[J]. Annual Review of Earth and Planetary Sciences,1995,23(1):251-285.
[33] Defant M J,Drummond M S. Derivation of some Modern Arc Magma by Melting of Young Subducted Lithosphere[J]. Nature,1990,347(6294):662-665.
[34] Defant M J,Drumrnond M S,Mount S T. Heles:Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc[J]. Geology,1993,21(6):547-550.
[35] 秦克章. 额尔古纳南段中生代斑岩-次火山岩-浅成低温Cu、Mo、Pb、Zn、Ag成矿系统[J]. 矿床地质,1998,17(增刊):201-206. Qin Kezhang. Mesozoic Porphyry-Volcano Rock-Epithermal Cu、Mo、Pb、Zn Metallogenic System in the Southern Section of Eergu'na[J]. Mineral Deposits,1998,17(Sup.):201-206.
[36] 曾令平. 甲乌拉银铅锌矿床地质特征及成矿控制探讨[J]. 有色金属(矿山部分),2010,62(3):34-39. Zeng Lingping. Geological Features of Jiawula Ag-Pb-Zn Deposit and Its Metallogenic Control Discussion[J]. Nonferrous Metals(Mining Section),2010,62(3):34-39.
[37] 翟德高,刘家军,王建平,等. 内蒙古甲乌拉大型Pb-Zn-Ag矿床稳定同位素地球化学研究[J]. 地学前缘,2013,20(2):213-225. Zhai Degao,Liu Jiajun,Wang Jianping,et al. A Study of Stable Isotope Geochemistry of the Jiawula Large Pb-Zn-Ag Ore Deposit,Inner Mongolia[J]. Earth Science Frontiers,2013,20(2):213-225.
[38] 李铁刚,武广,刘军,等. 大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义[J]. 岩石学报,2014,30(1):257-270. Li Tiegang,Wu Guang,Liu Jun,et al. Rb-Sr Isochron Age of the Jiawula Pb-Zn-Ag Deposit in the Manzhouli Area and Its Geological Significance[J]. Acta Petrologica Sinica,2014,30(1):257-270.
[39] 祝洪臣,张炯飞,权恒. 大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境[J]. 吉林大学学报(地球科学版),2005,35(4):436-442. Zhu Hongchen,Zhang Jiongfei,Quan Heng. Two Stages of Mesozoic Lithogennesis and Mineralization in Daxing'anling Mountains[J]. Journal of Jilin University(Earth Science Edition),2005,35(4):436-442.
[40] 叶天竺,吕志成,庞振山,等. 勘查区找矿预测理论与方法:找矿预测地质模型[M]. 北京:地质出版社,2015. Ye Tianzhu,Lü Zhicheng,Pang Zhenshan,et al. Theory and Method of Prospecting Prediction in Exploration Area:Geological Model for Ore Prospecting[M]. Beijing:Geological Publishing House,2015.
[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[4] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
[5] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[6] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[7] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[8] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[9] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[10] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[11] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[12] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[13] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[14] 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470.
[15] 张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 海南岛北部古生界时代:碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1187-1206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!