吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (3): 798-804.doi: 10.13278/j.cnki.jjuese.201603201
朱杰1, 徐颖1, 李栋伟1, 陈军浩2
Zhu Jie1, Xu Ying1, Li Dongwei1, Chen Junhao2
摘要:
针对泊江海子矿白垩纪地层中的砂岩和泥岩,分别进行了不同温度(-20~20℃)下的三轴压缩试验。试验结果表明:在-20~20℃之间,白垩纪地层软岩的峰值强度和弹性模量均随温度的降低及围压的升高而增加,其中中砂岩的峰值强度随温度的变化程度明显大于泥岩,即其对温度的敏感性更高;而岩石峰值处的轴向应变则随温度的下降而减小;另外,随着温度降低,两种岩石的峰值内摩擦角和黏聚力均有一定程度的提高,并且抗剪强度指标的增加主要集中在黏聚力上。通过对试验结果的整理和分析,掌握了白垩纪地层软岩在不同低温和围压下的力学特性和规律,为西部地区矿井冻结法设计与施工提供了可靠的依据。
中图分类号:
[1] 李宁,程国栋,谢定义. 西部大开发中的岩土力学问题[J]. 岩土工程学报,2001,23(3):268-272. Li Ning,Cheng Guodong,Xie Dingyi. Geomechanics Development in Civil Construction in Western China[J]. Chinese Journal of Geotechnical Engineering, 2001,23(3):268-272.[2] 马巍,王大雁. 冻土力学[M]. 北京:科学出版社,2014. Ma Wei,Wang Dayan. Frozen Soil Mechanics[M]. Beijing:Science Press,2014.[3] 张虎,张建明,苏凯,等.冻土旁压试验与单轴试验对比[J].吉林大学学报(地球科学版),2015,45(5):1479-1484. Zhang Hu,Zhang Jianming,Su Kai,et al. Comparison Between Pressuremeter Test and Uniaxial Compresson Test of Frozen Soil[J]. Journal of Jilin University(Earth Science Edition),2015,45(5):1479-1484.[4] 刘泉声,康永水,黄兴,等.裂隙岩体冻融损伤关键问题及研究状况[J].岩土力学,2012,33(4):971-978. Liu Quansheng,Kang Yongshui,Huang Xing,et al. Critical Problems of Freeze-Thaw Damage in Fractured Rock and their Research Status[J]. Rock and Soil Mechanics, 2012,33(4):971-978.[5] 赖远明,张耀,张淑娟,等. 超饱和含水率和温度对冻结砂土强度的影响[J]. 岩土力学,2009,30(12):3665-3670. Lai Yuanming,Zhang Yao,Zhang Shujuan,et al. Experimental Study of Strength of Frozen Sandy Soil Under Different Water Contents and Temperatures[J]. Rock and Soil Mechanics,2009,30(12):3665-3670.[6] Mordovskoi S D, Petrov E E. Mechanical Properties of Frozen Rock in a Two-Phase Model[J].Journal of Mining Science,1994,30(1):48-53.[7] Ulrich T J,Darling T W.Observation of Anomalous Elastic Behavior in Rock at Low Temperatures[J].Geophysical Research Letters,2001,28(11):2293-2296.[8] 徐光苗,刘泉声,彭万巍,等. 低温作用下岩石基本力学性质试验研究[J]. 岩石力学与工程学报,2006,25(12),2502-2508. Xu Guangmiao,Liu Quansheng,Peng Wanwei,et al. Experimental Study Basic Mechanical Behaviors of Rocks Under Low Temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(12):2502-2508.[9] 杨更社,奚家米,李慧军,等. 三向受力条件下冻结岩石力学特性试验研究[J]. 岩石力学与工程学报,2010,29(3):459-464. Yang Gengshe,Xi Jiami,Li Huijun,et al. Experimental Study of Rock Mechanical Properties Under Triaxial Compressive and Frozen Conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010,29(3):459-464.[10] 张继周,缪林昌,杨振峰. 冻融条件下岩石损伤劣化机制和力学特性研究[J].岩石力学与工程学报,2008,27(8):1688-1694. Zhang Jizhou,Miao Linchang,Yang Zhenfeng. Research on Rock Degradation and Deterioration Mechanisms and Mechanical Characteristics Under Cyclic Freezing-Thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(8):1688-1694.[11] MT/T 593.4-2011人工冻土物理力学性能试验:第4部分:人工冻土单轴抗压强度试验方法[S].北京:中国煤炭工业出版社,2011. MT/T 593.4-2011 Artificial Frozen Soil Physics Mechanics Performance Test:Part 4:Artificial Frozen Soil Compression Strength Test Method[S].Beijing:China Coal Industry Publishing House,2011.[12] GB/T 50266-2013工程岩体力学试验方法标准[S].北京:中国计划出版社,2013. GB/T 50266-2013 Standard for Test Methods of Engineering Rock Mass[S].Beijing:China Planning Press,2013. |
[1] | 洪勇, 车效文, 郑孝玉, 刘鹏, 周蓉. 陕西泾阳南塬滑坡干湿黄土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1207-1218. |
[2] | 陈鹏, 单玄龙, 郝国丽, 赵容生, 周健. 长白山仙人桥温泉断裂岩溶复合型地热成因模式[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1236-1246. |
[3] | 洪勇, 岳玉秋, 郑孝玉, 车效文, 刘鹏. 大连滨海粉质黏土剪切力学特性环剪试验[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1475-1481. |
[4] | 佴磊, 苏占东, 徐丽娜, 杨旭然. 中国主要沼泽草炭土的形成环境及分布特征[J]. J4, 2012, 42(5): 1477-1484. |
[5] | 杨峰田, 庞忠和, 王彩会, 段忠丰, 罗璐, 李义曼. 苏北盆地老子山地热田成因模式[J]. J4, 2012, 42(2): 468-475. |
[6] | 刘娜, 毕海涛, 任何军, 姬克宁, 郑松志. 阿特拉津低温降解菌的筛选及降解机理研究[J]. J4, 2009, 39(5): 893-898. |
[7] | 林学钰, 王心义, 廖资生. 地下热流系统及其开发工程配置--以河南省开封市区为例[J]. J4, 2008, 38(6): 913-0919. |
[8] | 刘虹,张兰英,刘娜,刘鹏. 低温下固定化微生物降解水体中阿特拉津的效果[J]. J4, 2008, 38(6): 1027-1031. |
[9] | 祝洪臣,王海坡,张炯飞. 内蒙古苏尼特左旗两种不同成因类型金矿[J]. J4, 2006, 36(05): 759-766. |
|