吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1538-1549.doi: 10.13278/j.cnki.jjuese.201605302

• 地球探测与信息技术 • 上一篇    下一篇

大地电磁三维矢量有限元正演

严家斌, 皇祥宇   

  1. 中南大学地球科学与信息物理学院, 长沙 410083
  • 收稿日期:2016-01-15 出版日期:2016-09-26 发布日期:2016-09-26
  • 通讯作者: 皇祥宇(1990-),硕士研究生,主要从事大地电磁无网格化正演研究,E-mail:huangfucsu@163.com E-mail:huangfucsu@163.com
  • 作者简介:严家斌(1969-),教授,主要从事电磁法数据处理及图像处理研究工作,E-mail:cspyry@csu.edu.cn
  • 基金资助:

    国家自然基金项目(40874055);湖南省自然科学基金项目(14JJ2012)

Vector Finite Element Method

Yan Jiabin, Huang Xiangyu   

  1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
  • Received:2016-01-15 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by the National Nature Science Foundation of China (40874055) and the Natural Science Foundation of Hunan Province, China (14JJ2012)

摘要:

采用广义变分原理,基于矢量基函数详细推导了大地电磁三维矢量有限元方程。为了提高计算精度和效率,应用直接法强加边界条件改善总体系数矩阵的条件数,同时使用SSOR(symmetric successive over relaxation)预处理的双共轭稳定梯度法求解复对称大型稀疏线性方程组。并利用国际标准模型与相关参考文献的结果进行了对比,验证了算法的准确性。对一个典型的三维低阻体模型进行正演,得到了不同测线的视电阻率和相位断面图,并与二维正演结果进行对比分析。结果表明:在x方向测线上,ρyx变化幅度较ρxy小,中心测线上的ρyxρxy响应均与二维TM模式条件下的响应特征相似。

关键词: 大地电磁法, 广义变分原理, 矢量有限元方法, SSOR预条件, 边界条件强加方法

Abstract:

Based on the vector basis function,the generalized variational principle was adopted to deduce the discrete equations of magnetotelluric field.In order to increase the accuracy and efficiency of calculation, the direct method is used to impose boundary conditions, improving condition number of generalco efficient matrix. At the same time, the complex, symmetric,large sparselinear systems was solved by symmetric successive over relaxation preconditioned BICGSTAB method. The international standard model had been calculated,and the contrast with the results in related references had validated the accuracy of the algorithm. The forward modeling on a typical low resistivity model had been carried out, the response of apparent resistivity and phase had been got, and the results of 3D model and 2D model were compared.The results showed that in x direction, the change range of ρyx is less than that of ρxy. The response of both ρyx and ρxy for 3D model in thecentral survey line is similar to the 2D TM mode.

Key words: magnetotelluric method, generalized variational principle, vector finite element method, SSOR precondition, imposition of boundary conditions

中图分类号: 

  • P631.3

[1] Avdeev D B. Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application[J]. Surveys in Geophysics,2005,26(6):767-799.

[2] Hohmann G W. Three-Dimensional Induced Polarization and Electromagnetic Modeling[J]. Geophysics,1975,40(2):309-324.

[3] Xiong Z,Raiche A,Sugeng F. Efficient Solution of Full Domain 3D Electromagnetic Modelling Problems[J]. Exploration Geophysics,2000,31(1/2):158-161.

[4] Smith J T. Conservative Modeling of 3-D Electromagnetic Fields:Part I:Properties and Error Analysis[J]. Geophysics,1996,61(5):1308-1318.

[5] 谭捍东,余钦范,John Booker,等. 大地电磁法三维交错采样有限差分数值模拟[J]. 地球物理学报,2003,46(5):705-711. Tan Handong,Yu Qinfan,Booker J,et al. Magnetotelluric Three-Dimensional Modeling Using the Staggered-Grid Finite Difference Method[J]. Chinese Journal of Geophysics,2003,46(5):705-711.

[6] 陈辉,邓居智,谭捍东,等. 大地电磁三维交错网格有限差分数值模拟中的散度校正方法研究[J]. 地球物理学报,2011,54(6):1649-1659. Chen Hui,Deng Juzhi,Tan Handong,et al. Study on Divergence Correction Method in Three-Dimensional Magnetotelluric Modeling with Staggered-Grid Finite Difference Method[J]. Chinese Journal of Geophysics,2011,54(6):1649-1659.

[7] Badea E A,Everett M E,Newman G A,et al. Finite-Element Analysis of Controlled-Source Electromagnetic Induction Using Coulomb-Gauged Potentials[J]. Geophysics,2001,66(3):786-799.

[8] Um E S,Harris J M,Alumbaugh D L. A Lorenz-Gauged Finite-Element Solution for Transient CSEM Modeling[C]//2010 SEG Annual Meeting. Denver:Society of Exploration Geophysicists,2010.

[9] Mitsuhata Y,Uchida T. 3D Magnetotelluric Modeling Using the T-Ω Finite-Element Method[J]. Geophysics,2004,69(1):108-119.

[10] 徐志锋,吴小平. 可控源电磁三维频率域有限元模拟[J]. 地球物理学报,2010,53(8):1931-1939. Xu Zhifeng,Wu Xiaoping.Controlled Source Electro-magnetic 3-D Modeling in Frequency Domain by Finite Element Method[J]. Chinese Journal of Geophysics,2010,53(8):1931-1939.

[11] 王若,王妙月,底青云,等. CSAMT三维单分量有限元正演[J]. 地球物理学进展,2014,29(2):839-845. Wang Ruo,Wang Miaoyue,Di Qingyun,et al. 3D1C Modeling Using Finite Element Method[J]. Progress in Geophysics,2014,29(2):839-845.

[12] 张继锋. 基于电场双旋度方程的三维可控源电磁法有限单元法数值模拟[D]. 长沙:中南大学,2008. Zhang Jifeng. Three Dimensional Controlled Source Electromagnetic Numerical Simulation Based on Electric Field Double Curl Equation Using Finite Element Method[D]. Changsha:Central South University,2008.

[13] 徐凌华,童孝忠,柳建新,等. 基于有限单元法的二维/三维大地电磁正演模拟策略[J]. 物探化探计算技术,2009,31(5):421-425+407. Xu Linghua,Tong Xiaozhong,Liu Jianxin,et al. Solution Strategies For 2D and 3D Magnetotelluric Forward Modeling Based on the Finite Element Method[J]. Computing Techniques for Geophysical and Geochemical Exploration,2009,31(5):421-425.

[14] 童孝忠. 大地电磁测深有限单元法正演与混合遗传算法正则化反演研究[D].长沙:中南大学,2008. Tong Xiaozhong. Research of Forward Using Finite Element Method and Regularized Inversion Using Hybrid Genetic Algorithm in Magnetotelluric Sounding[D]. Changsha:Central South University,2008.

[15] 金建铭.电磁场有限元方法[M]. 西安:西安电子科技大学出版社,1998:164-190. Jin Jianming. Finite Element Method of Electromagnetic Field[M]. Xi'an:Xi'an Electronic University Press,1998:164-190.

[16] Nam M J,Kim H J,Song Y,et al. 3D Magne-totelluric Modelling Including Surface Topography[J]. Geophysical Prospecting,2007,55(2):277-287.

[17] 王烨. 基于矢量有限元的高频大地电磁法三维数值模拟[D].长沙:中南大学,2008. Wang Ye. A Study of 3D High Frequency Magnetotelluric Modeling by Edge-Based Finite Element Method[D]. Changsha:Central South University,2008.

[18] 刘长生. 基于非结构化网格的三维大地电磁自适应矢量有限元数值模拟[D]. 长沙:中南大学,2009. Liu Changsheng. Three-Dimensional Magnetotellurics Adaptive Edge Finite-Element Numerical Simulation Based on Unstructured Meshes[D]. Changsha:Central South University,2009.

[19] 顾观文,吴文鹂,李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报(地球科学版),2014,44(5):1678-1686. Gu Guanwen,Wu Wenli,Li Tonglin. Modeling for the Effect of Magnetotelluric 3D Topography Based on the Vector Finite-Element Method[J]. Journal of Jilin University (Earth Science Edition),2014,44(5):1678-1686.

[20] 陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990. Chen Leshou,Wang Guang'e. Magnetotelluric Sounding Method[M]. Beijing:Geological Publishing House,1990.

[21] 徐世浙. 地球物理中的有限单元法[M].北京:科学出版社,1994. Xu Shizhe. Finite Element Method in Geophysics[M]. Beijing:Science Press,1994.

[22] 曾攀. 有限元分析基础教程[M]. 北京:清华大学出版社,2008. Zeng Pan. Fundamentals of Finite Element Analysis[M]. Beijing:Tsinghua University Press,2008.

[23] 李建慧. 基于矢量有限单元法的大回线源瞬变电磁法三维数值模拟[D].长沙:中南大学,2011. Li Jianhui.3D Numerical Simulation for Transient Electromagnetic Field Excited by Large Source Loop Based on Vector Finite Element Method[D]. Changsha:Central South University,2011.

[24] Weiss C,Newman G. Electromagnetic Induction in a Generalized 3D Anisotropic Earth:Part 2:The LIN Preconditioner[J]. Geophysics,2003,68(3):922-930.

[25] Zhdanov M S,Varentsov I M,Weaver J T,et al. Methods for Modelling Electromagnetic Fields Results from COMMEMI:The International Project on the Comparison of Modelling Methods for Electromagnetic Induction[J]. Journal of Applied Geophysics,1997,37(3/4):133-271.

[26] 肖调杰,王赟,宋滔,等. 大地电磁法的理论探测深度[J]. 地球物理学进展,2015,30(5):2100-2106. Xiao Tiaojie,Wang Yun,Song Tao,et al. Depth of Investigation in Magnetotelluric Method[J]. Progress in Geophysics,2015,30(5):2100-2106.

[1] 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270.
[2] 于向前,赵义平,王明新,刘迪,王文婷,汪馨竹. 音频大地电磁法与核磁共振法结合划分含水层的试验[J]. 吉林大学学报(地球科学版), 2014, 44(1): 350-358.
[3] 汤井田,李灏,李晋,强建科,肖晓. top-hat变换与庐枞矿集区大地电磁强干扰分离[J]. 吉林大学学报(地球科学版), 2014, 44(1): 336-343.
[4] 张文秀, 周逢道, 林君, 刘长胜, 曹学峰, 陈健, 徐汶东. 分布式电磁探测系统在深部地下水资源勘查中的应用[J]. J4, 2012, 42(4): 1207-1213.
[5] 柳建新, 郭荣文, 童孝忠, 刘颖, 刘鹏茂. 大地电磁法正演中多重网格法求解的广义傅里叶谱分析[J]. J4, 2011, 41(5): 1587-1595.
[6] 汤井田, 周聪, 张林成. CSAMT电场y方向视电阻率的定义及研究[J]. J4, 2011, 41(2): 552-558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!