吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1550-1560.doi: 10.13278/j.cnki.jjuese.201605303
张广智, 孙昌路, 潘新朋, 张志明, 姜岚杰, 印兴耀
Zhang Guangzhi, Sun Changlu, Pan Xinpeng, Zhang Zhiming, Jiang Lanjie, Yin Xingyao
摘要:
密度信息可预测储层流体饱和度,因此获取可靠的密度参数已成为全波形反演中首要考虑的问题。为了获得更稳定的反演密度,本文从频率、初始速度模型、初始密度模型和密度速度同时反演四个方面对密度的影响进行了研究。根据研究测试结果制定了稳定的反演策略:首先将密度固定,反演速度,此时波动方程中不再含有密度项,因而可以得到准确的速度模型;将其作为初始速度模型进行速度、密度同时反演,可以较好地减小速度对密度的影响。理论模型测试结果充分说明了策略的有效性。
中图分类号:
[1] Tarantola A. Inversion of Seismic Reflection Data in the Acoustic Approximation[J]. Geophysics, 1984,49(8):1259-1266.[2] Mora P. Nonlinear Two-Dimensional Elastic Inversion of Multioffset Seismic Data[J]. Geophysics,1987,52(9):1211-1228.[3] Pratt R G, Shin C, Hick G J. Gauss-Newton and Full Newton Methods in Frequency-Space Seismic Waveform Inversion[J]. Geophysical Journal International,1998,133(2):341-362.[4] Brossier R, Operto S, Virieux J. Seismic Imaging of Complex Onshore Structures by 2D Elastic Frequency-Domain Full-Waveform Inversion[J]. Geophysics,2009,74(6):WCC105-WCC118.[5] Jeong W, Lee H Y, Min D J. Full Waveform Inversion Strategy for Density in the Frequency Domain[J]. Geophysical Journal International,2012,188(3):1221-1242.[6] Bai J, Yingst D. Q Estimation Through Waveform Inversion[C]//75th EAGE Conference & Exhibition Incorporating. London:EAGE,2013:Th-10-01.[7] Operto S, Virieux J, Ribodetti A, et al. Finite-Difference Frequency-Domain Modeling of Viscoacoustic Wave Propagation in 2D Tilted Transversely Isotropic (TTI) Media[J]. Geophysics, 2009, 74(5):T75-T95.[8] Plessix R E, Rynja H. VTI Full Waveform Inversion:A Parameterization Study with a Narrow Azimuth Streamer Data Example[C]//2010 SEG Annual Meeting.[S.l.]:SEG,2010:962-966.[9] Plessix R E, Milcik P, Rynja H, et al. Multiparameter Full-Waveform Inversion:Marine and Land Examples[J]. The Leading Edge, 2013, 32(9):1030-1038.[10] Operto S, Gholami Y, Prieux V, et al. A Guided Tour of Multiparameter Full-Waveform Inversion with Multicomponent Data:From Theory to Practice[J]. The Leading Edge, 2013, 32(9):1040-1054.[11] Bai Jianyong,Yingst D.Simultaneous Inversion of Velocity and Density in Time-Domain Full Waveform Inversion[C]//2014 SEG Annual Meeting.[S.l.]:Society of Exploration Geophysicists, 2014.[12] Przebindowska A, Kurzmann A, Köhn D, et al. The Role of Density in Acoustic Full Waveform Inversion of Marine Reflection Seismics[C]//74th EAGE Conference & Exhibition.[S. l.]:EAGE, 2012:W027.[13] Forgues E, Lambaré G. Parameterization Study for Acoustic and Elastic Ray Plus Born Inversion[J]. Journal of Seismic Exploration, 1997, 6(2/3):253-277.[14] Jeong W, Min D J. Application of Acoustic Full Waveform Inversion for Density Estimation[C]//2012 SEG Annual Meeting.[S. l.]:Society of Exploration Geophysicists, 2012.[15] Davis T A. Algorithm 832:UMFPACK V4.3:An Unsymmetric-Pattern Multifrontalmethod[J]. ACM Transactions on Mathematical Software (TOMS), 2004, 30(2):196-199.[16] 杨积忠,刘玉柱,董良国. 变密度声波方程多参数全波形反演策略[J]. 地球物理学报,2014,57(2):628-643. Yang Jizhong,Liu Yuzhu,Dong Liangguo. A Mmulti-Parameter Full Waveform Inversion Strategy for Acoustic Media with Variable Density[J]. Chinese Journal of Geophysics, 2014,57(02):628-643.[17] 张广智,杜炳毅,陈怀震,等.纵横波弹性阻抗联合反演方法[J].吉林大学学报(地球科学版),2014,44(5):1695-1704. Zhang Guangzhi, Du Bingyi, Chen Huaizhen, et al. Joint Inversion of PP and PS Waves Elastic Impedance[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5):1695-1704.[18] 刘璐,刘洪,张衡,等. 基于修正拟牛顿公式的全波形反演[J].地球物理学报,2013, 56(7):2447-2451. Liu Lu, Liu Hong, Zhang Heng, et al. Full Waveform Inversion Based on Modified Quasi-Newton Equation[J]. Chinese Journal of Geophysics, 2013, 56(7):2447-2451.[19] 曹书红,陈景波.频率域全波形反演中关于复频率的研究[J]. 地球物理学报,2014,57(7):2302-2313. Cao Shuhong, Chen Jingbo.Studies on Complex Frequencies in Frequency Domain Full Waveform Inversion[J]. Chinese Journal of Geophysics, 2014, 57(7):2302-2313.[20] 刘国峰,刘洪,孟小红,等. 频率域波形反演中与频率相关的影响因素分析[J].地球物理学报,2012,55(4):1345-1353. Liu Guofeng, Liu Hong, Meng Xiaohong, et al. Frequency-Related Factors Analysis in Frequency Domain Waveform Inversion[J]. Chinese Journal of Geophysics, 2012,55(4):1345-1353. |
[1] | 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444. |
[2] | 刘新彤, 刘四新, 孟旭, 傅磊. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 474-482. |
[3] | 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267. |
[4] | 吴建光, 张平, 吕昊, 曾晓献. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 255-264. |
[5] | 冯晅, 鲁晓满, 刘财, 周超, 金泽龙, 张明贺. 基于逐减随机震源采样法的频率域二维黏滞声波方程全波形反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1865-1873. |
[6] | 田家林, 杨志, 付传红, 杨琳, 李友, 朱永豪. 高频微幅冲击振动作用下岩石破碎行为计算方法[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1808-1816. |
[7] | 高成, 孙建国. 不同域的局部平面波分解应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1523-1529. |
[8] | 于德武, 龚胜平. 对迭代法位场向下延拓方法的剖析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 934-940. |
[9] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[10] | 郭振波,李振春. 起伏地表条件下频率-空间域声波介质正演模拟[J]. 吉林大学学报(地球科学版), 2014, 44(2): 683-693. |
[11] | 朱渊,余斌,亓星,王涛,陈源井. 地形条件对泥石流发育的影响:以岷江流域上游为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 268-277. |
[12] | 汤文武,柳建新,童孝忠. 电导率连续变化的线源FCSEM有限元正演模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1646-1654. |
[13] | 张生强,刘春成,韩立国,杨小椿. 基于L-BFGS算法和同时激发震源的频率多尺度全波形反演[J]. 吉林大学学报(地球科学版), 2013, 43(3): 1004-1012. |
[14] | 乐友喜,黄健良,张阳,周磊,张玉明,陈孔全. 地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 632-640. |
[15] | 徐志锋,胡文宝. 层状大地频率域长导线源激发的电磁场[J]. 吉林大学学报(地球科学版), 2013, 43(1): 275-281. |
|