吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1571-1579.doi: 10.13278/j.cnki.jjuese.201605305

• 地球探测与信息技术 • 上一篇    下一篇

高精度分频相干加强技术在微小断层识别中的应用

冯智慧1, 张文春1, 李向群1, 孙广利1, 刘财2   

  1. 1. 吉林建筑大学测绘与勘查技术学院, 长春 130118;
    2. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2016-02-21 出版日期:2016-09-26 发布日期:2016-09-26
  • 通讯作者: 刘财(1962-),男,教授,博士生导师,主要从事探地雷达和地震数据处理的研究,E-mail:liucai@jlu.edu.cn E-mail:liucai@jlu.edu.cn
  • 作者简介:冯智慧(1981-),男,博士,主要从事油气地质与地震方法方面的研究,E-mail:wolfshouse@163.com
  • 基金资助:

    国家重点基础研究发展计划(“973”)项目(2013CB429805,2009CB219301);国家自然科学基金项目(41174080,41340039);国家公益性行业科研专项项目(201011078)

Application of High-Precision Frequency Division Coherency Enhancement Technique in Micro-Fault Identification

Feng Zhihui1, Zhang Wenchun1, Li Xiangqun1, Sun Guangli1, Liu Cai2   

  1. 1. School of Surveying and Exploration & Engineering, Jilin Jianzhu University, Changchun 130118, China;
    2. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-02-21 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by the State Key Development Program for Basic Research of China (2013CB429805, 2009CB219301);the National Natural Science Foundation of China (41174080, 41340039) and Public Welfare Industry Research Projects(201011078)

摘要:

随着致密油、页岩气等非常规能源领域勘探程度的加深,特别是水平井位的大规模部署,微小断层的准确识别比以往更加重要。本文利用扩散滤波技术在压制噪声的同时能够增强地震同相轴横向连续性、使断点更加清晰、以及微小断层在窄频带地震数据中断层特征明显的特点,提出了一种基于高精度快速匹配追踪的分频相干加强微小断层识别方法。与常规短时窗傅氏变换谱分解技术相比,基于匹配追踪的谱分解技术更适用于地震信号非平稳性的特点。为了在保证匹配追踪算法计算高效性的同时进一步提高计算精度,对其进行了相应的改进:采用可变尺度参数的Morlet小波构建时频原子库,利用二阶微分复数道分析技术得到高分辨率三瞬参数,最后给出了具体的实现步骤。实际数据应用表明,与常规相干体技术相比,分频相干加强技术对微小断层的反映更为清晰、准确,而且对河道边界和岩性发育区等地质信息也有更好的反映。这不但为非常规勘探(以水平井钻探及大规模压裂为核心技术)提供了更详细的地质信息,而且在高含水老油田的剩余油开发中也将发挥更大的作用。

关键词: 分频相干加强, 快速匹配追踪, 水平井, 复数道分析, 微小断层

Abstract:

With the deepening of unconventional petroleum resource exploration, such as tight oil, shale gas and so on, especially the large-scale horizontal well deployment, the accurate identification of micro-faults is more important than before. According to the characteristics that diffusion filtering technique can enhance seismic events lateral continuity and suppress noise at the same time, make the offset point more clear, and the feature of micro-fault is very obvious in narrow-frequency seismic data, the authors proposed a frequency division coherence method to identify micro-faults. The spectral decomposition technology based on matching pursuit is more suitable for the characteristic of a non-stationary seismic signal than the conventional short-time window Fourier transform spectral decomposition technique. This paper proceeds the corresponding improvement to make it more efficient and more accurate: adopting adjustable parameter Morlet wavelet to establish time-frequency atom dictionaries, using second-order differential complex trace analysis method to get three instantaneous parameters with high resolution, and giving the concrete implementation steps. The application of actual data shows that the frequency division coherence technique is clearer and more accurate for the identification of micro-faults comparing with the traditional coherence technique, and even more preferable for the geological information such as a river channel boundary and a lithology development zone. It provides more geological information for unconventional petroleum resources exploration (for horizontal well drilling and the large scale fracturing) and will play an important role in the development of the remaining oil with high containing water.

Key words: frequency division coherency enhancement, matching pursuit, horizontal well, complex trace analysis, micro-fault

中图分类号: 

  • P631.4

[1] Bahorich M S, Farmer S L. 3-D Seismic Coherency for Faults and Stratigraphic Features[J]. The Leading Edge, 1995, 60(3):1075-1082.

[2] Marfurt K J,Kirlin R L, Farmer S L.3-D Seismic Attribute Using a Semblance-Based Coherency Algorithm[J].Geophysics, 1998, 63(4):1150-1165.

[3] Gersztenkorn A,Marfurt K J. Eigen Structure Based Cohe-rence Computations as an Aid to 3-D Structural and Stratigraphic Mapping[J].Geophysics, 1999, 64(5):1468-1479.

[4] 雷明,王建功,刘彩艳,等.地震切片技术在安达工区的应用[J].石油地球物理勘探,2010,45(3):418-422. Lei Ming,Wang Jiangong,Liu Caiyan, et al. Application of Slicing Technology in Anda Area[J]. Oil Geophysical Prospecting, 2010,45(3):418-422.

[5] Lisle R L. Detection of Zones of Abnormal Strains in Structures Using Gaussian Curvature Analysis[J]. AAPG Bulletin, 1994, 78(12):1811-1819.

[6] Roberts A. Curvature Attributes and Their Application to 3D Interpreted Horizons[J].First Break, 2001, 19(2):85-100.

[7] Bergbauer S,Mukerji T,Hennings P.Improving Curvature Analyses of Deformed Horizons Using Scale-Dependent Filtering Techniques[J]. AAPG Bulletin, 2003, 87(8):1255-1272.

[8] 张欣.蚂蚁追踪在断层自动解释中的应用:以平湖油田放鹤亭构造为例[J].石油地球物理勘探,2010,45(2):278-281. Zhang Xin. Application of Ant Tracing Algorithm in Fault Automatic Interpretation:A Case Study on Fangheting Structure in Pinghu Oilfield[J].Oil Geophysical Prospecting,2010, 45(2):278-281.

[9] 史军.蚂蚁追踪技术在低级序断层解释中的应用[J].石油天然气学报,2009,31(2):257-258. Shi Jun. Application of Ant Tracking Technology in Small Fault Interpretation[J]. Journal of Oil and Gas Technology, 2009,31(2):257-258.

[10] 董志华,周家雄,隋波,等.基于扩散滤波方法的小断层识别技术[J].石油地球物理勘探,2013,48(5):758-762. Dong Zhihua, Zhou Jiaxiong, Sui Bo, et al. Small Fault Identification Technique Based on Diffusion Filtering[J].Oil Geophysical Prospecting, 2013, 48(5):758-762.

[11] 孙夕平,杜世通,汤磊.相干增强各向异性扩散滤波技术[J].石油地球物理勘探, 2004, 39(6):651-655,665 Sun Xiping,Du Shitong, Tang Lei. Coherent-Enhancing Anisotropic Diffusion Filtering Technique[J]. Oil Geophysical Prospecting, 2004, 39(6):651-655,665.

[12] 严哲,顾汉明,蔡成国.基于各向异性扩散滤波的地震图像增强处理[J].石油地球物理勘探,2013,48(3):390-394. Yan Zhe,Gu Hanming,Cai Chengguo. Seismic Image Enhancement Based on Anisotropic Diffusion[J]. Oil Geophysical Prospecting, 2013, 48(3):390-394.

[13] 石战战,贺振华,文晓涛,等.基于复数域非线性各向异性扩散滤波的裂缝检测方法[J].石油地球物理勘探,2012, 47(2):286-290. Shi Zhanzhan, He Zhenhua,Wen Xiaotao,et al. A Fractural Detection Method Based on Nonlinear Complex Anisotropic Diffusion Filtering[J]. Oil Geophysical Prospecting,2012, 47(2):286-290.

[14] Lopez J A, Partyka G,Haskell N L,et al. Identification of Deltaic Facies with 3-D Seismic Coherency and Spectral Decomposition Cube[J].GCAGS Transactions,1997,47:305-309.

[15] Marfurt K J, Kirlin R L. Narrow-Band Spectral Analysis and Thin-Bed Tuning[J]. Geophysics, 2001, 66(4):1274-1283.

[16] 马志霞,孙赞东.Gabor-Morlet小波变换分频技术及其在碳酸盐岩储层预测中的应用[J]. 石油物探,2010,49(1):42-45. Ma Zhixia,Sun Zandong. Spectral Decomposition Technique Based on Gabor-Morlet Wavelet Transform and Its Application to Carbonate Reservoir Prediction[J]. Geophysical Prospecting for Petroleum,2010,49(1):42-45.

[17] Castagna J,Sun S. Comparison of Spectral Decomposi-tion Methods[J]. First Break,2006,24(3):75-79.

[18] 陈学华,贺振华,黄德济.基于广义S变换的地震资料高效时频谱分解[J].石油地球物理勘探, 2008, 43(5):530-534. Chen Xuehua, He Zhenhua, Huang Deji. High-Efficient Time-Frequency Spectrum Decomposition of Seismic Data Based on Generalized S Transform[J]. Oil Geophysical Prospecting, 2008, 43(5):530-534.

[19] 冯磊,姜在兴.基于匹配追踪的谱分解方法及其应用[J]. 勘探地球物理进展,2009, 32(1):33-36. Feng Lei, Jiang Zaixing. Spectral Decomposition Based on Matching Pursuit and Its Application[J]. Progress in Exploration Geophysics, 2009, 32(1):33-36.

[20] Mallat S,Zhang Z. Matching Pursuit with Time-Frequency Dictionaries[J]. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.

[21] 吴小羊,刘天佑.基于时频重排的地震信号Wigner-Ville分布时频分析[J].石油地球物理勘探, 2009, 44(2):201-205. Wu Xiaoyang, Liu Tianyou. Time-Frequency Analysis on Wigner-Ville Distribution of Seismic Signal Based on Time-Frequency Rearrangement[J]. Oil Geophysical Prospecting, 2009, 44(2):201-205.

[22] 杨海涛,朱仕军,文中平. 基于Wigner-Ville的谱分解效果分析[J]. 勘探地球物理进展, 2009, 32(1):37-39. Yang Haitao, Zhu Shijun, Wen Zhongping, et al. Effect Analysis of Spectral Decomposition Based on Wigner-Ville Distribution[J].Progress in Exploration Geophysics, 2009, 32(1):37-39.

[23] 王军,李亚安. 多分量信号时频分析交叉项抑制研究[J].探测与控制学报,2004,26(4):13-17. Wang Jun, Li Yaan. The Research of Cross-Component Suppression of Multi-Component Signals Using Time Frequency Analysis[J]. Journal of Detection and Control,2004,26(4):13-17.

[24] Sun D S,Ling Y,Gao J, et al. Application of Discrete Frequency Coherence Cubes in the Fracture Detection of Volcanic Rocks in Full-Azimuth Seismic Data[J].SEG Technical Program Expanded Abstracts, 2010, 29:1342-1345.

[25] 刘小龙,刘天佑,王华,等.基于匹配追踪算法的频谱成像技术及其应用[J].石油地球物理勘探,2010, 45(6):850-855. Liu Xiaolong, Liu Tianyou, Wang Hua, et al. Spectrum Imaging Technique and Its Application Based on Matching Pursuit Algorithm[J]. Oil Geophysical Prospecting,2010,45(6):850-855.

[26] 冯智慧,王世煜,刘财,等. 高分辨率地震信号瞬时特征分析方法[J]. 吉林大学学报(地球科学版),2007,37(增刊):82-85. Feng Zhihui,Wang Shiyu,Liu Cai,et al.Method of Instantaneous Characteristic Parameters Analysis for High Resolution Seismic Signal[J]. Journal of Jilin University (Earth Science Edition), 2007,37(Sup.):82-85.

[27] 何光明,高如曾,韩德贵,等.小波变换在地震资料高分辨率处理中的应用[J].石油物探, 1996, 35(2):44-54. He Guangming,Gao Ruzeng, Han Degui,et al. The Application of Wavelet Transform in High Resolution Processing of Seismic Data[J]. Geophysical Prospecting for Petroleum, 1996, 35(2):44-54.

[28] 吴小羊,刘天佑.基于时频重排的地震信号Wigner-Ville分布时频分析[J].石油地球物理勘探,2009,44(2):201-205. Wu Xiaoyang,Liu Tianyou. Time-Frequency Analysis on Wigner-Ville Distribution of Seismic Signal Based on Time-Frequency Rearrangement[J]. Oil Geophysical Prospecting,2009,44(2):201-205.

[29] Fehmers G C,Hocker F W. Fast Structural Inter-Pretation with Structure-Oriented Filtering[J]. Geophysics,2003,68(4):1286-1293.

[30] Weickert J. Coherence Enhancing Diffusion Filtering[J]. International Journal of Computer Vision,1999, 31:111-127.

[31] Lavialle O, Pop S, Germain C, et al.S eismic Fault Preserving Diffusion[J]. Journal of Applied Geophysics, 2007, 61:132-141.

[32] Dave H. Structure-Oriented Bilateral Filtering of Seismic Images[J]. SEG Technical Program Expanded Abstracts, 2011, 30:3596-3600.

[33] 覃天.多属性相干方法识别微小断层[J]. 工程地球物理学报,2008,5(5):538-542. Qin Tian. Identification of Minor Fault Based on Multi-Attribute Seismic Coherence Technology[J]. Chinese Journal of Engineering Geophysics,2008,5(5):538-542.

[34] 谢春临,陈树民,姜传金,等.趋势面分析与相干体技术在火山岩预测中的应用[J].地球物理学报,2011,54(2):368-373. Xie Chunlin,Chen Shuming,Jiang Chuanjin,et al. Application of a Method Combining Trend Surface Analysis and Coherence Cube Technology to Volcanic Prediction[J].Chinese of Engineering Geophysics,2011,54(2):368-373.

[1] 郭亮亮, 张延军, 许天福, 金显鹏. 大庆徐家围子不同储层改造的干热岩潜力评估[J]. 吉林大学学报(地球科学版), 2016, 46(2): 525-535.
[2] 常森, 罗静兰, 付晓燕, 杜支文, 张三, 杜孝华. 苏里格气田水平井地质三维导向技术-以盒8段辫状河储层为例[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1608-1619.
[3] 祝鹏, 林承焰, 李智强, 赵文积, 张华莲. 水平井和大斜度井中阵列侧向测井响应数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1862-1869.
[4] 兰凯, 熊友明, 闫光庆, 刘明国, 刘匡晓. 川东北水平井储层井壁稳定性及其对完井方式的影响[J]. J4, 2011, 41(4): 1233-1238.
[5] 周炜, 王陶, 伍轶鸣. 示踪剂模拟技术在边水油藏水驱前缘研究中的应用--以哈德油田为例[J]. J4, 2010, 40(3): 549-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!