吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1247-1254.doi: 10.13278/j.cnki.jjuese.201704205
娄军芳1,2, 汤洁1, 宋扬1
Lou Junfang1,2, Tang Jie1, Song Yang1
摘要: 降解有机质的电产甲烷(electromethanogenesis)技术在生物能(CH4)的生产、废水处理、地下水和土壤(及沉积物)生物修复等领域有着巨大的发展潜力。寻找简捷的方法获取高活性的生物阴极是该技术当前发展面临的一个突出问题。以最有应用潜力的单室无膜微生物电解池(SCMMEC)为反应器,对以葡萄糖为可发酵物质代表的SCMMEC阴极上生物膜的评估表明,可利用SCMMEC处理含葡萄糖的废水来富集电活性生物阴极。当外压为0.8 V时,富集的2个生物阴极的电流密度可分别达到0.59 A/m2和0.62 A/m2。但该法获得的生物阴极活性仍然比较低,是阴阳极中的电流限制电极。进一步的介体影响评估表明,生物阴极的电活性不受溶液中可能存在的电子介体的影响。在低剂量缓冲盐(6 mmol/L的磷酸盐)下的长期运行显示,0.8 V外压下生物阴极的活性在62 d和153 d时持平,到275 d时已有明显下降。长期直流通电单向极化导致的离子浓缩,甚至盐沉积,可能是生物阴极活性下降的主要原因。
中图分类号:
[1] Hajime K, Naoki S, Fu Qian, et al. Bio-Electro-chemical Property and Phylogenetic Diversity of Microbial Communities Associated with Bioelectrodes of an Electromethanogenic Reactor[J]. Journal of Bioscience and Bioengineering, 2013,116:114-117. [2] Van Eerten-Jansen M C A A,Ter Heijne A, Buisman C J N,et al. Microbial Electrolysis Cells for Production of Methane from CO2: Long-Term Performance and Perspectives[J]. International Journal of Energy Research, 2012, 36 (6):809-819. [3] Harnisch F, Schröder U. From MFC to MXC: Chemical and Biological Cathodes and Their Potential for Microbial Bioelectrochemical Systems[J]. Chemical Society Reviews, 2010, 39: 4433-4448. [4] Xafenias N, Mapelli V. Performance and Bacterial Enrichment of Bioelectrochemical Systems During Methane and Acetate Production[J]. International Journal of Hydrogen Energy,2014, 39(36):21864-21875. [5] 徐恒,汪翠萍,王凯军. 不同碳源对产甲烷生物阴极性能的影响[J].高等学校化学学报, 2015, 36(2): 344-348. Xu Heng, Wang Cuiping,Wang Kaijun. Effect of Carbon Sources on the Performance of Methane-Producing Biocathodes[J]. Chemical Journal of Chinese Universities, 2015, 36(2): 344-348. [6] Villano M, Ralo C, Zeppilli M, et al. Influence of the Set Anode Potential on the Performance and Internal Energy Losses of a Methane-Producing Microbial Electrolysis Cell[J]. Bioelectrochemistry, 2016, 107: 1-6. [7] 滕文凯, 刘广立, 骆海萍,等. 基质COD 浓度对单室微生物电解池产甲烷的影响[J]. 环境科学, 2015,36(3):1021-1026. Teng Wenkai,Liu Guangli,Luo Haiping,et al. Influence of Substrate COD on Methane Production in Single-Chambered Microbial Electrolysis Cell[J]. Environmental Science,2015,36(3): 1021-1026. [8] Jafary T, Daud W R W, Ghasemi M, et al. Biocathode in Microbial Electrolysis Cell: Present Status and Future Prospects[J].Renewable and Sustainable Energy Reviews,2015,47:23-33. [9] Xu Heng, Wang Kaijun, Holmes D E. Bioelectro-chemical Removal of Carbon Dioxide (CO2): An Innovative Method for Biogas Upgrading[J]. Bioresource Technology, 2014, 173: 392-398. [10] Borole A P, Reguera G, Ringeisen B, et al. Electroactive Biofilms: Current Status and Future Research Needs[J]. Energy & Environmental Science, 2011, 4:4813-4834. [11] Manuel M F, Neburchilov V, Wang Heming, et al. Hydrogen Production in a Microbial Electrolysis Cell with Nickel-Based Gas Diffusion Cathodes[J]. Journal of Power Sources, 2010, 195:5514-5519. [12] Mark W L, Cheryl D C, Ramon G L. Inactivation of Biofilm Bacteria[J]. Applied and Environmental Microbiology,1988,54:2492-2499. [13] Babauta J, Renslow R, Lewandowski Z,et al. Electrochemically Active Biofilms: Facts and Fiction: A Review[J]. Biofouling, 2012,28(8):789-812. [14] Fu Qian, Yoshihiro K, Naoya F, et al. Bio-Electrochemical Analyses of the Development of a Thermophilic Biocathode Catalyzing Electromethanogenesis[J]. Environmental Science and Technology, 2015,49:1225-1232. [15] Lovley D R. Powering Microbes with Electricity: Direct Electron Transfer from Electrodes to Microbes[J]. Environmental Microbiology Reports, 2011, 3:27-35. [16] Lee H S, Prathap P, Andrew K M, et al. Evaluation of Energy-Conversion Efficiencies in Microbial Fuel Cells (MFCs) Utilizing Fermentable and Non-Fermentable Substrates[J]. Water Research, 2008, 42(6/7): 1501-1510. [17] Torres C I, Marcus A K, Rittmann B E. Proton Transport Inside the Biofilm Limits Electrical Current Generation by Anode-Respiring Bacteria[J]. Biotechnology and Bioengineering, 2008, 100:872-881. [18] Liu Hong, Grot S, Logan, B E. Electrochemically Assisted Microbial Production of Hydrogen from Acetate[J]. Environmental Science and Technology, 2005, 39:4317-4320. [19] Walczak M M, Dryer D A, Jacobson D D, et al. pH-Dependent Redox Couple: Illustrating the Nernst Equation Using Cyclic Voltammetry[J]. Environmental Science and Technology, 1997, 74:1195-1197. [20] Jeremiasse A W, Hamelers H V M, Buisman C J N. Microbial Electrolysis Cell with a Microbial Biocathode[J]. Bioelectrochemistry, 2010, 78(1): 39-43. [21] Logan B E, Call D, Cheng Shaoan, et al. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter[J]. Environmental Science and Technology,2008, 42(23): 8630-8640. [22] Vrieze J D, Hennebel T, Boon N, et al. Methano-sarcina:The Rediscovered Methanogen for Heavy Duty Biomethanation[J]. Bioresource Technology, 2012,112:1-9. [23] Chen Ye, Cheng J J, Creamer K S. Inhibition of Anaerobic Digestion Process: A Review[J]. Bioresource Technology, 2008, 99:4044-4064. [24] Rozendal R A, Hamelers H V M, Rabaey K, et al. Towards Practical Implementation of Bioelectrochemical Wastewater Treatment[J]. Trends in Biotechnology, 2008, 26:450-459. [25] Zhen Guangyin, Lu Xueqin, Kobayashi T, et al. Promoted Electromethanosynthesis in a Two-Chamber Microbial Electrolysis Cells (MECs) Containing a Hybrid Biocathode Covered with Graphite Felt (GF) [J]. Chemical Engineering Journal, 2016, 284:1146-1155. |
[1] | 宋志伟, 程晓霞, 乔艳云, 潘宇, 罗克洁. 接种污泥对好氧颗粒污泥稳定性的影响[J]. J4, 2011, 41(3): 873-878. |
[2] | 彭举威, 康春莉, 崔玉波, 刘显臣, 韩相奎. 表面流人工湿地处理糠醛生产废水的应用[J]. J4, 2010, 40(6): 1419-1424. |
[3] | 刘鹏, 张兰英, 刘莹莹, 刘娜, 刘峰, 刘虹, 崔哲, 许国欣. 组合生物技术处理制药废水及其生物相[J]. J4, 2010, 40(1): 169-175. |
[4] | 宋志伟, 王秋旭, 宁婷婷, 任南琪, 李立欣. 微生物絮凝剂投加方式对好氧颗粒污泥性能的影响[J]. 吉林大学学报(地球科学版), 2015, 45(1): 247-254. |
|