吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1255-1267.doi: 10.13278/j.cnki.jjuese.201704301

• 地球探测与信息技术 • 上一篇    下一篇

基于磁偶极子的频率域电磁系统几何误差分析

李光1,2,3, 渠晓东1,2,3, 黄玲1,2, 方广有1,2   

  1. 1. 中国科学院电子学研究所, 北京 100190;
    2. 中国科学院电磁辐射与探测技术重点实验室, 北京 100190;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2017-01-23 出版日期:2017-07-26 发布日期:2017-07-26
  • 作者简介:李光(1988),男,博士研究生,主要从事频率域电磁法仪器设计及理论研究,E-mail:liguang706@163.com
  • 基金资助:
    国家重大科研装备研制项目(ZDYZ2012-1-03-05)

Geometric Error Analysis of Frequency-Domain Magnetic Dipole-Dipole System

Li Guang1,2,3, Qu Xiaodong1,2,3, Huang Ling1,2, Fang Guangyou1,2   

  1. 1. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
    2. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China;
    3. Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-01-23 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by National Major Scientific Research Equipments Development Project (ZDYZ2012-1-03-05)

摘要: 基于磁偶极子模型的频率域电磁法仪器在进行大地探测的过程中,由于收发线圈的安装误差、晃动以及材料的几何形变等因素影响,收发线圈的位置及姿态角发生变化,从而产生几何误差,而几何误差的定量分析对频率域电磁法仪器在制作、野外实验操作以及校正方面均具有很强的指导意义。本文根据误差来源的不同,将几何误差分为一次场误差和二次场误差两类;通过引入一次场张量矩阵和二次场张量矩阵,基于均匀大地模型正演得到9种线圈架构接收线圈接收到的一次场及二次场,并以微分的方式定量地分析了9种线圈架构收发线圈位置及姿态角变化引起几何误差的变化特征。对9种线圈架构的几何误差分析可知:在几何形变引入的一次场误差中,仅有PERyz、PERzy线圈架构不包含位置变化的一次项误差,仅有VCA、VCP及HCP线圈架构不包含姿态角变化的一次项误差;在几何形变引入的二次场误差中,PERzx、PERxz线圈架构最大,而VCA、VCP及HCP线圈架构受高度及收发距变化的影响很大,需要实时测量并进行校正,VCP线圈架构受收发距变化以及姿态角变化的影响最小。

关键词: 频率域电磁法, 几何形变, 张量矩阵, 一次场误差, 二次场误差

Abstract: During the underground exploratio with frequency domain electromagnetic instruments based on magnetic dipole model, systematic errors are caused by the position and attitude changes of transmitting and receiving coils due to installation errors, the sway of instruments, as well as the geometric distortion of materials and other factors. The quantitative analysis of geometric errors for frequency-domain electromagnetic instruments has a great guiding significance in instrument production, field operation and system correction. According to the sources of the errors, the geometric errors were divided into two categories, one is the primary field error, the other is the secondary field error. By introducing the tensor matrixes of the primary field and the secondary field, we forwarded the primary field and the secondary fields from nine configurations based on homogeneous earth model, and quantitatively analyzed the features and changes of the geometric errors of the nine configurations in a differential way. Numerical results show that, in the primary field errors introduced by the geometric distortion, only PERyz and PERzy coil configurations do not contain linear term of the position change; only VCA, VCP and HCP configurations do not contain linear term of attitude change. In the secondary field errors introduced by the geometric distortion, PERzx and PERxz coil configurations have the maximum relative error; VCA, VCP and HCP coil configurations are greatly influenced by the change of height and coil separation, which needs real-time measurement for correction; and the VCP coil configuration is least influenced by the change of coil separation and attitude.

Key words: frequency domain electromagnetic, geometric distortion, tensor matrix, primary filed error, secondary field error

中图分类号: 

  • P631.3
[1] Fraser D C. The Multicoil: Ⅱ: Airborne Electro-magnetic System[J]. Geophysics, 1979, 44(8): 1367-1394.
[2] Fraser D C. Dighem Resistivity Techniques in Airborne Electromagnetic Mapping[J]. Geological Survey of Canada, 1986, 22: 49-54.
[3] Cain M J. ResolveSurvey for US Geological Survey East Poplar Oil Fields[R]. Montana: Fugro Airborne Surveys, 2004.
[4] Won I J, Oren A, Funak F. GEM-2A: A Programmable Broadband Helicopter-Towed Electromagnetic Sensor[J]. Geophysics, 2003, 68(6): 1888-1895.
[5] McNeill J D. EM34-3 Measurements at Two Inter-Coil Spacings to Reduce Sensitivity to Near-Surface Material[R]. Mississauga: Geonics, 1985.
[6] McNeill J D. Why Doesn't Geonics Limited Build a Multi-Frequency EM31 or EM38?[R]. Mississauga: Geonics, 1996.
[7] McNeill J D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers[R]. Mississauga: Geonics, 1980.
[8] Won I J, Keiswetter D A, Fields G R A, et al. GEM-2: A New Multifrequency Electromagnetic Sensor[J]. Journal of Environmental and Engineering Geophysics, 1996, 1(2): 129-137.
[9] Won I J, Keiswetter D A, Hanson D R, et al. GEM-3: AMonostatic Broadband Electromagnetic Induction Sensor[J]. Journal of Environmental and Engineering Geophysics, 1997, 2(1): 53-64.
[10] Huang H, San Filipo B, Oren A, et al. Coaxial Coil Towed EMI Sensor Array for UXO Detection and Characterization[J]. Journal of Applied Geophysics, 2007, 61(3): 217-226.
[11] Manstein Y, Manstein A. EM-ISensor NEMFIS: Method, Equipment and Case Stories of Archaeological Prospection[J]. ArcheoSciences, 2009, 33: 321-324.
[12] Tølbøll R J, Christensen N B. Sensitivity Functions of Frequency-Domain Magnetic Dipole-Dipole Systems[J]. Geophysics, 2007, 72(2): F45-F56.
[13] Ward S H, Hohmann G W. Electromagnetic Theory for Geophysical Applications[M]. Tulsa: Society of Exploration Geophysicists, 1988: 131-311.
[14] 王卫平, 曾昭发, 李静, 等. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. Wang Weiping, Zeng Zhaofa, Li Jing,et al. Topographic Effects and Correction for Frequency Airborne Electromagnetic Method[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3): 941-951.
[15] Son K H. Interpretation of Electromagnetic Dipole-Dipole Frequency Sounding Data over a Vertically Stratified Earth[D]. North Carolina: North Carolina State University, 1985.
[16] Won I J, Smits K. Airborne Electromagnetic Bathymetry[J]. Geoexploration, 1991, 27(3): 297-319.
[17] Holladay J S, Lo B, Prinsenberg S K. Bird Orientation Effects in Quantitative Airborne Electromagnetic Interpretation of Pack Ice Thickness Sounding[C]//Oceans'97 MTS/IEEE Conference Proceedings. Halifax: [s. n.], 1997: 1114-1119.
[18] Balkov E V, Epov M I, Manstein A K, et al. Elements of Calibration and Data Interpretation of EMI Sounding Device EMS[C]//The 10th European Meeting of Environmental and Engineering Geophysics. Utrecht: Near Surface, 2004.
[19] Yin C, Fraser D C. Attitude Corrections of Helicopter EM Data Using a Superposed Dipole Model[J]. Geophysics, 2004, 69(2): 431-439.
[20] 王琦, 林君, 于生宝,等. 固定翼航空电磁系统的线圈姿态及吊舱摆动影响研究与校正[J]. 地球物理学报, 2013, 56(11): 3741-3750. Wang Qi, Lin Jun, Yu Shengbao, et al. Study on Influence and Correction of Coil Attitude and Bird Swing for the Fixed-Wing Time-Domain Electromagnetic System[J]. Chinese Journal of Geophysics, 2013, 56(11): 3741-3750.
[21] 曲昕馨, 李桐林, 王飞. 直升机吊舱姿态变化对电磁场测量的影响规律及其校正方法研究[J]. 地球物理学报, 2014, 57(4): 1310-1321. Qu Xinxin, Li Tonglin, Wang Fei. A Study on the Effect of Bird's Attitude on Helicopter EM Data and the Correction Method[J]. Chinese Journal of Geophysics, 2014, 57(4): 1310-1321.
[22] Lin J. Sensitivity Analysis and Comparison of Frequency-Domain Electromagnetic System Configurations[C]//International Symposium on Antennas, Propagation and EM Theory, 2000 Proceedings. Isape: IEEE Xplore, 2000: 630-633.
[23] Guillemoteau J, Sailhac P, Behaegel M. Modelling an Arbitrarily Oriented Magnetic Dipole over a Homogeneous Half-Space for a Rapid Topographic Correction of Airborne EM Data[J]. Exploration Geophysics, 2015, 46(1): 85-96.
[24] West G F, Macnae J C. Physics of the Electroma-gnetic Induction Exploration Method: Electromagnetic Methods in Applied Geophysics: Applications: Part A and Part B[M]. Tulsa: Society of Exploration Geophysicists, 1991: 5-45.
[25] Frischknecht F C, Labson V F, Spies B R, et al. Profiling Methods Using Small Sources[M]. Tulsa: Society of Exploration Geophysicists, 1991: 105-270.
[26] Bracken R E, Smith D V, Brown P J, et al. Calibrating a Tensor Magnetic Gradiometer Using Spin Data[R]. Reston: US Geological Survey, 2005.
[27] Pang H, Li J, Chen D, et al. Calibration of Three-Axis Fluxgate Magnetometers with Nonlinear Least Square Method[J]. Measurement, 2013, 46(4):1600-1606.
[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 刘新彤, 刘四新, 孟旭, 傅磊. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 474-482.
[3] 王焱, 鹿琪, 刘财, 佘松盛, 刘四新. 利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤[J]. 吉林大学学报(地球科学版), 2018, 48(2): 491-500.
[4] 殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶. 多重网格准线性近似技术在三维航空电磁正演模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(1): 252-260.
[5] 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270.
[6] 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561.
[7] 刘永亮, 李桐林, 朱成, 关振伟, 苏晓波. 基于拟线性积分方程法的三维电磁场数值模拟精度分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1268-1277.
[8] 陈帅, 李桐林, 张镕哲. 考虑激发极化效应的瞬变电磁一维Occam反演[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1278-1285.
[9] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[10] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[11] 翁爱华, 刘佳音, 贾定宇, 杨悦, 李建平, 李亚彬, 赵祥阳. 有限长导线源频率测深有限内存拟牛顿一维反演[J]. 吉林大学学报(地球科学版), 2017, 47(2): 597-605.
[12] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[13] 罗天涯, 熊彬, 蔡红柱, 陈欣, 刘云龙, 兰怀慷, 李祖强, 梁卓. 复杂电性结构大地电磁二维响应特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 215-223.
[14] 李世文, 殷长春, 翁爱华. 时间域航空电磁电阻率和磁导率全时反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1830-1836.
[15] 韩松, 刘国兴, 韩江涛. 华南地区进贤-柘荣剖面深部电性结构[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1837-1846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!