吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1268-1277.doi: 10.13278/j.cnki.jjuese.201704302
刘永亮, 李桐林, 朱成, 关振伟, 苏晓波
Liu Yongliang, Li Tonglin, Zhu Cheng, Guan Zhenwei, Su Xiaobo
摘要: 应用于大规模三维数据反演的拟线性近似方法的计算精度和应用范围至今仍是一个比较模糊的概念。本文首先实现了基于拟线性近似方法(对角拟线性近似、标量拟线性近似、拟解析近似和局部拟线性近似)的三维电磁场数值模拟,然后通过正演计算,对这些方法的计算精度进行了系统的对比研究。理论研究结果表明:对角拟线性近似方法精度最高,适用范围最广,对电性变化在3~4个数量级内的地电模型都能给出精确的计算结果;拟解析近似方法计算精度只低于对角拟线性近似方法,它适用于异常电导率与背景电导率比值为2~3个数量级的地电模型;标量拟线性近似方法和局部拟线性近似方法的精度较低,只适用于异常电导率与背景电导率比值小于2个数量级的情况。
中图分类号:
[1] Born M. Optic[M]. New York: Springer,1933. [2] Berdichevsky M N, Zhdanov M S. Advanced Theory of Deep Geomagnetic Sounding[M]. Amsterdam: Elsevier Science Publishers, 1984. [3] Torres-Verdin C, Habashy T M. Rapid 2.5-Dimen-sional Forward Modeling and Inversion via a New Nonlinear Scattering Approximation[J]. Radio Science, 1994, 29(4): 1051-1079. [4] Torres-Verdin C, Habashy T M. A Two-Step Linear Inversion of Two-Dimensional Electrical Conductivity[J]. IEEE Transactions on Antennas & Propagation,1995: 43(4):405-415. [5] Zhdanov M S, Fang S. Quasi-Linear Approximation in 3-D Electromagnetic Modeling[J]. Geophysics,1996, 61(3): 646-665. [6] Zhdanov M S, Fang S. Three-Dimensional Quasi-Linear Electromagnetic Inversion[J]. Radio Sci, 1996, 31(4): 741-754. [7] Zhdanov M S, Hursán G. 3D Electromagnetic Inversion Based on Quasi-Analytical Approximation[J]. Inverse Problems, 2000, 16(5): 1297–1322. [8] Zhdanov M S, Tartaras E. Three-Dimensional Inversion of Multitransmitter Electromagnetic Data Based on the Localized Quasi-Linear Approximation[J]. Geophys J Int, 2002, 148(3): 506-519. [9] Ueda T, Zhdanov M S. Fast Numerical Modeling of Multitransmitter Electromagnetic Data Using Multigrid Quasi-Linear Approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1428-1434. [10] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用:研究历史与研究现状概述以及若干新进展[J].吉林大学学报(地球科学版),2016,46(4):1231-1259. Sun Jianguo. High-Frequency Asymptotic Scattering Thoeries and Their Application in Numerical Modeling and Imaging of Geophysical Fields: An Overview of the Research History and the State-of-the-Art, and Some New Developments[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1231-1259. [11] 王伯年, 李过房, 曹伟武. 爱因斯坦求和约定的推广[J]. 上海理工大学学报, 2003, 25(1): 5-7. Wang Bonian, Li Guofang, Cao Weiwu. On the Extension of Einstein's Summation Convention[J]. Journal of University of Shanghai for Science and Technology, 2003, 25(1): 5-7. [12] 李建平. 带地形的三维复电阻率电磁场正反演研究[D]. 长春: 吉林大学, 2008. Li Jianping. Research on Electromagnetic Modeling of 3D Complex Resistivity with Topography [D]. Changchun: Jilin University, 2008. |
[1] | 孙建国. 论直流电位场拟解析近似中的电位与电荷反射函数的物理意义[J]. J4, 2012, 42(2): 545-553. |
[2] | 张金会, 孙建国. 三维直流电场积分方程中奇异性的近似处理[J]. J4, 2009, 39(5): 923-928. |
[3] | 孙建国. 声波散射数值模拟的两种新方案[J]. J4, 2006, 36(05): 863-868. |
|