吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1268-1277.doi: 10.13278/j.cnki.jjuese.201704302

• 地球探测与信息技术 • 上一篇    下一篇

基于拟线性积分方程法的三维电磁场数值模拟精度分析

刘永亮, 李桐林, 朱成, 关振伟, 苏晓波   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2016-11-03 出版日期:2017-07-26 发布日期:2017-07-26
  • 通讯作者: 李桐林(1962),男,教授,博士生导师,主要从事电磁法理论与应用教学和研究工作,E-mall:lilaoshizh@163.com E-mail:lilaoshizh@163.com
  • 作者简介:刘永亮(1986),男,博士研究生,主要从事电磁法理论及三维正反演研究,E-mall:liuyongliang198718@163.com
  • 基金资助:
    国家深部探测技术与实验研究专项(SinoProbe-03-05);国家重大科学仪器设备开发专项(2011YQ05006009)

Precision Analysis of 3D Electromagnetic Field Numerical Modeling Based on Quasi-Linear Integral Equation Method

Liu Yongliang, Li Tonglin, Zhu Cheng, Guan Zhenwei, Su Xiaobo   

  1. College of GeoExploration Sciences and Technology, Jilin University, Changchun 130026, China
  • Received:2016-11-03 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by National Deep State Detection Technology and the Experimental Research on Special(SinoProbe-03-05) and National Major Scientific Instruments and Equipment Development Projects(2011YQ05006009)

摘要: 应用于大规模三维数据反演的拟线性近似方法的计算精度和应用范围至今仍是一个比较模糊的概念。本文首先实现了基于拟线性近似方法(对角拟线性近似、标量拟线性近似、拟解析近似和局部拟线性近似)的三维电磁场数值模拟,然后通过正演计算,对这些方法的计算精度进行了系统的对比研究。理论研究结果表明:对角拟线性近似方法精度最高,适用范围最广,对电性变化在3~4个数量级内的地电模型都能给出精确的计算结果;拟解析近似方法计算精度只低于对角拟线性近似方法,它适用于异常电导率与背景电导率比值为2~3个数量级的地电模型;标量拟线性近似方法和局部拟线性近似方法的精度较低,只适用于异常电导率与背景电导率比值小于2个数量级的情况。

关键词: 拟线性近似, 拟解析近似, 局部拟线性近似, 精度对比

Abstract: The accuracy and the application scope of quasi-linear approximation methods, including scalar quasi-linear approximation, diagonal quasi-linear approximation, quasi-analytic approximation and localized quasi-linear approximation, are still a relatively misty concept in large-scale three-dimensional data inversion. In the paper, we implemented three-dimensional numerical simulation based on these approximation methods. By forward modeling,we systematically compared the accuracy of simulation results, and constrained the range of applications of these methods. Theoretical results show that: The diagonal quasi-linear approximation method has the highest accuracy and the widest range of applications among these methods and can give accurate results when electrical resistivity changes within 3-4 orders of magnitude; The accuracy of the quasi-analytical approximation method is a bit lower than that of the diagonal quasi-linear approximation method, and is suitable for calculating the geoelectrical model whose conductivity contrast between abnormal and background is roughly a few times to a hundred times; The accuracy of scalar quasi-linear approximation method and localized quasi-linear approximation method is the lowest, and they are only able to be used to calculate the geoelectric model of anomalous conductivity and background conductivity ratio of roughly tens of times.

Key words: quasi-linear approximation, quasi-analytic approximation, localized quasi-linear approximation, accuracy comparison

中图分类号: 

  • P631.3
[1] Born M. Optic[M]. New York: Springer,1933.
[2] Berdichevsky M N, Zhdanov M S. Advanced Theory of Deep Geomagnetic Sounding[M]. Amsterdam: Elsevier Science Publishers, 1984.
[3] Torres-Verdin C, Habashy T M. Rapid 2.5-Dimen-sional Forward Modeling and Inversion via a New Nonlinear Scattering Approximation[J]. Radio Science, 1994, 29(4): 1051-1079.
[4] Torres-Verdin C, Habashy T M. A Two-Step Linear Inversion of Two-Dimensional Electrical Conductivity[J]. IEEE Transactions on Antennas & Propagation,1995: 43(4):405-415.
[5] Zhdanov M S, Fang S. Quasi-Linear Approximation in 3-D Electromagnetic Modeling[J]. Geophysics,1996, 61(3): 646-665.
[6] Zhdanov M S, Fang S. Three-Dimensional Quasi-Linear Electromagnetic Inversion[J]. Radio Sci, 1996, 31(4): 741-754.
[7] Zhdanov M S, Hursán G. 3D Electromagnetic Inversion Based on Quasi-Analytical Approximation[J]. Inverse Problems, 2000, 16(5): 1297–1322.
[8] Zhdanov M S, Tartaras E. Three-Dimensional Inversion of Multitransmitter Electromagnetic Data Based on the Localized Quasi-Linear Approximation[J]. Geophys J Int, 2002, 148(3): 506-519.
[9] Ueda T, Zhdanov M S. Fast Numerical Modeling of Multitransmitter Electromagnetic Data Using Multigrid Quasi-Linear Approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1428-1434.
[10] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用:研究历史与研究现状概述以及若干新进展[J].吉林大学学报(地球科学版),2016,46(4):1231-1259. Sun Jianguo. High-Frequency Asymptotic Scattering Thoeries and Their Application in Numerical Modeling and Imaging of Geophysical Fields: An Overview of the Research History and the State-of-the-Art, and Some New Developments[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1231-1259.
[11] 王伯年, 李过房, 曹伟武. 爱因斯坦求和约定的推广[J]. 上海理工大学学报, 2003, 25(1): 5-7. Wang Bonian, Li Guofang, Cao Weiwu. On the Extension of Einstein's Summation Convention[J]. Journal of University of Shanghai for Science and Technology, 2003, 25(1): 5-7.
[12] 李建平. 带地形的三维复电阻率电磁场正反演研究[D]. 长春: 吉林大学, 2008. Li Jianping. Research on Electromagnetic Modeling of 3D Complex Resistivity with Topography [D]. Changchun: Jilin University, 2008.
[1] 孙建国. 论直流电位场拟解析近似中的电位与电荷反射函数的物理意义[J]. J4, 2012, 42(2): 545-553.
[2] 张金会, 孙建国. 三维直流电场积分方程中奇异性的近似处理[J]. J4, 2009, 39(5): 923-928.
[3] 孙建国. 声波散射数值模拟的两种新方案[J]. J4, 2006, 36(05): 863-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!