吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1717-1731.doi: 10.13278/j.cnki.jjuese.201706111

• 地质与资源 • 上一篇    下一篇

辽宁青城子姚家沟斑岩型钼矿流体包裹体

和成忠1,2, 张德会1, 吴鸣谦1, 夏岩3, 张荣臻1,4, 胡铁军5   

  1. 1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
    2. 武警黄金第十支队, 昆明 650111;
    3. 青城子矿业有限公司, 辽宁 凤城 118100;
    4. 河南省地质调查院, 郑州 450001;
    5. 辽宁省有色地质局勘查总院, 沈阳 110000
  • 收稿日期:2017-03-22 出版日期:2017-11-26 发布日期:2017-11-26
  • 作者简介:和成忠(1988-),男,工程师,硕士,主要从事矿床地球化学方面的研究,E-mail:443220880@qq.com
  • 基金资助:
    国家自然科学基金项目(41373048);国土资源部公益性行业科研专项(201411024)

Fluid Inclusion of Yaojiagou Porphyry Mo Deposit in Qingchengzi in Liaoning Province

He Chengzhong1,2, Zhang Dehui1, Wu Mingqian1, Xia Yan3, Zhang Rongzhen1,4, Hu Tiejun5   

  1. 1. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;
    2. No.10 Gold Geological Party of CAPF, Kunming 650111, China;
    3. Qingchengzi Mining Co., Ltd., Fengcheng 118100, Liaoning, China;
    4. Henan Institute of Geological Survey, Zhengzhou 450001, China;
    5. Nonferrous Geological Bureau Exploration Institute of Liaoning Province, Shenyang 110000, China
  • Received:2017-03-22 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by the National Natural Science Foundation of China(41373048) and Public Welfare Industry Research of Ministry of Land and Resources(201411024)

摘要: 姚家沟钼矿是辽宁青城子矿田中近年来发现的钼矿床,位于华北克拉通北缘,燕辽钼成矿带内。姚家沟花岗斑岩岩体中发现的脑状石英细脉(UST)和石英眼是岩浆出溶热液的直接证据。该矿床蚀变分带特征明显,辉钼矿化主要发育在钾化带及矽卡岩化带中。对姚家沟岩体和钾化钼矿带的5期流体活动进行流体包裹体显微观测表明,其流体包裹体类型丰富,包括单相水包裹体(PW)、两相水包裹体(W)、三相CO2包裹体(C)、纯CO2包裹体(PC)和含子矿物包裹体(S),S型流体包裹体中子矿物有赤铁矿、黄铜矿和其他未知矿物,但没有石盐子晶。该矿床流体演化为:1)早期石英眼(均一温度为211.4~515.4℃,盐度(w(NaCl))为0.8%~19.2%)的高中温中低盐度富CO2体系;2)成矿期石英脉(均一温度为179.5~424.5℃,盐度为2.4%~21.5%)的高中温中低盐度NaCl-H2O-CO2体系;3)后期石英脉(均一温度为167.8~353.3℃,盐度为3.4%~15.8%)的中低温中低盐度NaCl-H2O-CO2体系;4)晚期方解石脉(均一温度为132.5~234.1℃,盐度为0.9%~11.2%)的中低温中低盐度NaCl-H2O体系;5) UST (均一温度为158.6~381.7℃,盐度为1.6%~21.5%)为中低温中低盐度NaCl-H2O-CO2体系,该期可能与钼矿化关系不大,代表另一期侵位更浅的岩浆出溶热液。流体不混溶、围岩蚀变以及流体混合作用导致流体温度、压力降低,CO2逸失,体系还原性增强,是成矿金属元素沉淀的主要机理。用等容线相交法对成矿期捕获压力进行估算,为124~180 MPa,对应深度为4.6~7.0 km,与同成矿带其他钼矿比较,相对较深。

关键词: 姚家沟钼矿, 斑岩型, 流体包裹体, 流体特征, 成矿深度, 青城子矿田

Abstract: The Yaojiagou molybdenum deposit is a newly discovered one in recent years in the ore field of Qingchengzi in Liaoning. It is located in the Yan-Liao Mo metallogenic belt in the northern margin of the North China craton. The quartz veins (UST)and quartz eyes in the Yaojiagou pluton are direct evidence of fluid exsolution from magma. Deposit alteration zonation is significant,and the molybdenum mineralization mainly exists in the potassic and skarn zones. After a microscopic observation,we found various abundant fluid inclusions,including single-phase aqueous (PW-type), two-phase aqueous (W-type), three-phase CO2 (C-type), pure CO2 (PC-type),and daughter mineral-bearing inclusions (S-type) in which the daughter minerals are hematite, chalcopyrite,and some other unknown minerals with no halite. The fluid evolution in this deposit are:1) the early quartz eye stage with the homogenization temperature of 211.4-515.4℃, salinity of 0.8%-19.2%,and rich in CO2; 2) the quartz veins mineralization stage with the homogenization temperature of 179.5-424.5℃ and salinity of 2.4%-21.5% in NaCl-H2O-CO2 system;3) the late quartz veins stage with the homogenization temperature of 167.8-353.3℃ and salinity of 3.4%-15.8% in NaCl-H2O-CO2 system;4) the latest calcite veins stage with the homogenization temperature of 132.5-234.1℃ and salinity of 0.9%-11.2% in NaCl-H2O system;5)the UST quartz veins stage with the homogenization temperature of 158.6-381.7℃ and salinity of 1.6%-21.5% in NaCl-H2O-CO2 system, and this stage represents a immiscible fluid exsolution from a shallower intrusive magma with no mineralization. Wall rock alteration and fluid mixing are the main mechanisms of ore-forming metal elements precipitation,which lead to fluid temperature, pressure reduction, CO2 escaping,and system rebalancing. We obtained the capture pressure of 124-180 MPa with the corresponding depth of 4.6-7.0 km during the ore-forming period by using the method of isochore intersection. It is relatively deeper than that of the other molybdenum deposits in the northern margin of the North China craton.

Key words: Yaojiagou Mo deposit, porphyry deposit, fluid inclusion, fluid's characteristics, metallogenic depths, Qingchengzi ore field

中图分类号: 

  • P618.65
[1] Zeng Q, Liu J, Qin K, et al. Types, Characteristics, and Time-Space Distribution of Molybdenum Deposits in China[J]. International Geology Review, 2013, 55(11):1311-1358.
[2] 方俊钦, 聂凤军, 张可, 等. 辽宁姚家沟钼矿床辉钼矿Re-Os同位素年龄测定及其地质意义[J]. 岩石学报, 2012, 28(2):372-378. Fang Junqin, Nie Fengjun, Zhang Ke,et al. Re-Os Isotopic Dating on Molybdenite Separates and Its Geological Significance from the Yaojiagou Molybdenum Deposit, Liaoning Province[J].Acta Petrologica Sinica,2012,28(2):372-378.
[3] 刘国平, 艾永富. 辽宁小佟家堡子金矿床成矿时代探讨[J]. 矿床地质, 2002, 11(1):53-57. Liu Guoping, Ai Yongfu. Study on Ore-Forming Epoch of Xiaotongjiabaozi Gold Deposit,Liaoning Province[J]. Mineral Deposits 2002,11(1):53-57.
[4] 薛春纪, 陈毓川, 路远发, 等. 辽东青城子矿集区金、银成矿时代及地质意义[J]. 矿床地质, 2003, 22(2):177-184. Xue Chunji, Chen Yuchuan, Lu Yuanfa, et al. 2003. Metallogenic Epochs of Au and Ag Deposits in Qingchengzi Ore-Clustered Area, Eastern Liaoning Province[J]. Mineral Deposits, 2003,22(2):177-184.
[5] 代军治. 辽宁青城子地区金、银矿床成矿流体特征及成因探讨[D]. 长春:吉林大学, 2005. Dai Junzhi. Characteristics of Ore-Forming Fluids and Discussion on the Genesis of Au,Ag Deposits in Qingchengzi Region, Liaoning Province[D].Changchun:Jilin University,2005.
[6] 李基宏. 辽宁青城子铅锌银金矿集区成矿条件与成矿预测[D]. 长春:吉林大学, 2005. Li Jihong. Study on Ore-Forming Conditions and Mineral Resource Assessment of Lead-Zinc-Silver-Gold Metallogenic Belt in Qingchenzi,Liaoning Province[D]. Changchun:Jilin University,2005.
[7] Yu G, Chen J, Xue C, et al. Geochronological Frame-work and Pb, Sr Isotope Geochemistry of the Qingchengzi Pb-Zn-Ag-Au Orefield, Northeastern China[J]. Ore Geology Reviews, 2009, 35(3):367-382.
[8] 马玉波, 邢树文, 张增杰, 等. 辽宁青城子榛子沟脉状铅锌矿成矿流体地球化学初探[J]. 矿床地质, 2012, 31(3):569-578. Ma Yubo, Xing Shuwen, Zhang Zengjie, et al. Preliminary Study of Geochemical Characteristics if Ore-Forming Fluid in Zhenzigou Veined Pb-Zn Deposit,Qingchengzi,Liaoning Province[J].Mineral Deposits,2012,31(3):569-578.
[9] 段晓侠, 刘建明, 王永彬, 等. 辽宁青城子铅锌多金属矿田晚三叠世岩浆岩年代学、地球化学及地质意义[J]. 岩石学报, 2012, 28(2):595-606. Duan Xiaoxia, Liu Jianming, Wang Yongbin,et al.Geochronology,Geochemistry and Geological Significance of Late Triassic Magmatism in Qingchengzi Orefield,Liaoning[J]. Acta Petrologica Sinica, 2012,28(2):595-606.
[10] Li S Z, Zhao G C, Santosh M, et al. Palaeoprote-rozoic Tectonothermal Evolution and Deep Crustal Processes in the Jiao-Liao-Ji Belt, North China Craton:A Review[J]. Geological Journal, 2011, 46(6):525-543.
[11] 李三忠, 韩宗珠, 刘永江, 等. 辽河群区域变质特征及其大陆动力学意义[J]. 地质论评, 2001, 47(1):9-18. Li Sanzhong, Han Zongzhu, Liu Yongjiang, et al. Continental Dynamics and Regional Metamorphism of the Liaohe Group[J]. Geological Review, 2001, 47(1):9-18.
[12] 李三忠, 韩宗珠, 刘永江, 等. 胶辽地块古元古代前造山期深部过程的地质与地球化学制约[J]. 地质科学, 2001, 36(2):184-194. Li Sanzhong, Han Zongzhu, Liu Yongjiang, et al. Constraints of Geology and Geochemistry on Palaeoproterozoic Pre-Orogenic Deep Processes in Jiao-Liao Massif[J]. Scientia Geologica Sinica, 2001,36(2):184-194.
[13] 吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3):305-317. Wu Fuyuan, Yang Jinhui, Liu Xiaoming. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China[J]. Geological Journal of China Universities, 2005,11(3):305-317.
[14] Hönig S, Leichmann J, Novak M. Unidirectional So-lidification Textures and Garnet Layering in V-Enriched Garnet-Bearing Aplite-Pegmatites in the Cadomian Brno Batholith, Czech Republic[J]. Journal of Geosciences, 2010, 55(2):113-129.
[15] Shannon J, Walker B, Carten R, et al. Unidirectional Solidification Textures and Their Significance in Determining Relative Ages of Intrusions at the Henderson Mine, Colorado[J]. Geology, 1982, 10(6):293-297.
[16] Betsi T B, Lentz D R. The Nature of "Quartz Eyes" Hosted by Dykes Associated with Au-Bi-As-Cu, Mo-Cu, and Base-Metal-Au-Ag Mineral Occurrences in the Mountain Freegold Region (Dawson Range), Yukon, Canada[J]. Journal of Geosciences, 2010, 55(4):347-368.
[17] Chang Z, Meinert L. The Magmatic-Hydrothermal Transition-Evidence from Quartz Phenocryst Textures and Endoskarn Abundance in Cu-Zn Skarns at the Empire Mine, Idaho, USA[J]. Chemical Geology, 2004, 210(1):149-171.
[18] Carten R B, Geraghty E P, Walker B M, et al. Cyclic Development of Igneous Features and Their Relationship to High-Temperature Hydrothermal Features in the Henderson Porphyry Molybdenum Deposit, Colorado[J]. Economic Geology, 1988, 83(2):266-296.
[19] Steele-Macinnis M, Lecumberri-Sanchez P, Bodnar R J. HOKIEFLINCS H2O-NaCl:A Microsoft Excel Spreadsheet for Interpreting Microthermometric Data from Fluid Inclusions Based on the PVTX Properties of H2O-NaCl[J]. Computers & Geosciences, 2012, 49:334-337.
[20] Mao S, Zhang D, Li Y, et al. An Improved Model for Calculating CO2 Solubility in Aqueous NaCl Solutions and the Application to CO2-H2O-NaCl Fluid Inclusions[J]. Chemical Geology, 2013, 347:43-58.
[21] Mao S, Duan Z, Hu J, et al. A Model for Single-Phase PVTx Properties of CO2-CH4-C2H6-N2-H2O-NaCl Fluid Mixtures from 273 to 1273 K and from 1 to 5000 bar[J]. Chemical Geology, 2010, 275(3/4):148-160.
[22] Touret J. Equation of State of CO2:Application to Cabonic Inclusions[J]. Bull Mineral, 1979, 102(5/6):577-583.
[23] Bakker R, Diamond L. Determination of the Compo-sition and Molar Volume of H2O-CO2 Fluid Inclusions by Microthermometry[J]. Geochimica et Cosmochimica Acta, 2000, 64(10):1753-1764.
[24] Anderson A J, Bodnar R J. An Adaptation of the Spindle Stage for Geometric Analysis of Fluid Inclusions[J]. Am Mineral, 1993, 78(5/6):657-664.
[25] Roedder E. Fluid Inclusions[J]. Reviews in Minera-logy, 1984, 12(6):71-77.
[26] Duan Z, Sun R, Zhu C, et al. An Improved Model for the Calculation of CO2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl and SO42-[J]. Marine Chemistry, 2006, 98(2/3/4):131-139.
[27] Frezzotti M L, Tecce F, Casagli A. Raman Spect-roscopy for Fluid Inclusion Analysis[J]. Journal of Geochemical Exploration, 2012, 112:1-20.
[28] 张荣臻, 张德会, 李建康, 等. 河南省栾川县石窑沟钼矿床地质特征和流体包裹体研究[J]. 矿物岩石地球化学通报, 2015, 34(1):167-176. Zhang Rongzhen,Zhang Dehui,Li Jiankang,et al. Study on Geology and Fluid Inclusions of the Shiyaogou Molybdenum Deposit,Luanchuan Country,Henan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(1):167-176.
[29] Bai T B, Koster Van Groos A F. The Distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce Between Granitic Melts and Coexisting Aqueous Fluids[J]. Geochimica et Cosmochimica, 1999, 63(7):1117-1131.
[30] Phillips G, Evans K. Role of CO2 in the Formation of Gold Deposits[J]. Nature, 2004, 429(6994):860-863.
[31] 卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011,27(5):1253-1261. Lu Huanzhang. FluidsImmiscibility and Fluid Inclusions[J]. Acta Petrologica Sinica, 2011,27(5):1253-1261.
[32] 和成忠, 王斌, 赵博, 等. 钼在岩浆-热液过程中的地球化学行为[J].矿物岩石地球化学通报, 2015, 34(1):208-215. He Chengzhong, Wang Bin, Zhao Bo, et al. Geochemical Behaviors of Molybdenum in the Magmatic-Hydrothermal Process[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(1):208-215.
[33] Minubayeva Z, Seward T M. Molybdic acid Ionisation Under Hydrothermal Conditions to 300℃[J]. Geochimica et Cosmochimica Acta, 2010, 74(15):4365-4374.
[34] Kudrin A V. Behavior of Mo in Aqueous NaCl and KCl Solutions at 300-450℃[J]. Geokhimiya, 1989,26:99-112.
[35] Ulrich T, Mavrogenes J. An Experimental Study of the Solubility of Molybdenum in H2O and KCl-H2O Solutions from 500℃ to 800℃, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta, 2008, 72(9):2316-2330.
[36] Zajaca Z, E. Halter W, Pettke T, et al. Determi-nation of Fluid/Melt Partition Coefficients by LA-ICPMS Analysis of Co-Existing Fluid and Silicate Melt Inclusions:Controls on Element Partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8):2169-2197.
[37] Keppler H J, Wyllie P. Partitioning of Cu, Sn, Mo, W, U, and Th Between Melt and Aqueous Fluid in the Systems Haplogranite-H2O-HCl and Haplogranite-H2O-HF[J]. Contrib Mineral Petrol, 1991, 109(2):139-150.
[38] Candela P A, Holland H D. The Partitioning of Co-pper and Molybdenum Silicate Melts and Aqueous Fluids Between Silicate Melts and Aqueous Fluids[J]. Geochwntca et Cosmochimicu Acta, 1984, 48(2):373-380.
[39] 孙燕, 刘建明, 曾庆栋. 斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响[J]. 地学前缘, 2012, 19(6):179-193. Sun Yan, Liu Jianming, Zeng Qingdong. An Approach to the Metallogenic Mechanism of Porphyry Copper(Molybdenum) Deposits and Pophyry Molybdenum(Copper) Seposits:Influence of Evolving Processes of Pre-Forming Fluids and Tectonic Settings[J].Earth Science Frontiers, 2012, 19(6):179-193.
[40] Robb L. Introduction to Ore-Forming Processes[M]. Maladen,MA:Blackwell Science Ltd, 2005.
[41] Li N, Ulrich T, Chen Y J, et al. Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China[J]. Ore Geology Reviews, 2012, 48:442-459.
[42] Rempel K U, Williams-Jones A E, Migdisov A A. The Partitioning of Molybdenum (VI) Between Aqueous Liquid and Vapour at Temperatures up to 370℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(11):3381-3392.
[43] Rempel K U, Williams-Jones A E, Migdisov A A. The Solubility of Molybdenum Dioxide and Trioxide in HCl-Bearing Water Vapour at 350℃ and Pressures up to 160 bars[J]. Geochimica et Cosmochimica Acta, 2008, 72(13):3074-3083.
[44] Rempel K U, Migdisov A A, Williams-Jones A E. The Solubility and Speciation of Molybdenum in Water Vapour at Elevated Temperatures and Pressures:Implications for Ore Genesis[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):687-696.
[45] 张德会, 周圣华, 万天丰,等. 矿床形成深度与深部成矿预测[J]. 地质通报, 2007, 26(12):1509-1518. Zhang Dehui,Zhou Shenghua,Wan Tianfeng,et al. Depth of Ore Deposit Formation and Prognosis of Deep-Seated Ore Deposits[J].Geological Bulletin of China,2007,26(12):1509-1518.
[46] Baker T. Emplacement Depth and Carbon Dioxide-Rich Fluid Inclusions in Intrusion-Related Gold Deposits[J]. Economic Geology, 2002, 97(5):1111-1117.
[47] Wilkinson J. Fluid Inclusions in Hydrothermal Ore Deposits[J]. Lithos, 2001, 55(1):229-272.
[48] Murakami H, Seo J H, Heinrich C A. The Relation Between Cu/Au Ratio and Formation Depth of Porphyry-Style Cu-Au±Mo Deposits[J]. Mineralium Deposita, 2010, 45(1):11-21.
[49] Tosdal R M, Dilles J H, Cooke D R. From Source to Sinks in Auriferous Magmatic-Hydrothermal Porphyry and Epithermal Deposits[J]. Elements, 2009, 5(5):289-295.
[50] Rusk B G, Reed M H. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte,Montana[J]. Economic Geology, 2008, 103(2):307-334.
[51] 刘利, 曾庆栋, 刘建明, 等. 内蒙古西拉木伦成矿带劳家沟斑岩型钼矿流体包裹体特征及地质意义[J]. 地质与勘探, 2012, 48(4):663-676. Liu Li,Zeng Qingdong,Liu Jianming,et al.Characteristics of Fluid Inclusions from the Laojiagou Porphyry Mo Deposit in the Xilamulun Metallogenic Belt,Inner Mongolia and Their Geological Significance[J].Geology and Exporation, 2012, 48(4):663-676.
[52] 刘翼飞, 聂凤军, 江思宏, 等. 内蒙古查干花钼矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2011, 41(6):1794-1805. Liu Yifei,Nie Fengjun, Jiang Sihong,et al.Ore-Forming Fluid Characteristics and Ore Genesis of Chaganhua Porphyry Molybdenum Deposit Central Inner Mongolia,China[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(6):1794-1805.
[53] 褚少雄, 曾庆栋, 刘建明, 等. 西拉沐伦钼矿带车户沟斑岩型钼-铜矿床成矿流体特征及其地质意义[J]. 岩石学报, 2010, 26(8):2465-2481. Chu Shaoxiong, Zeng Qingdong, Liu Jianming,et al. Characteristics and Its Geological Significance of Fluid Inclusions in Chehugou Porphyry Mo-Cu Deposit, Xilamulun Molybdenum Metallogenic Belt[J]. Acta Petrologica Sinica, 2010, 26(8):2465-2481.
[54] 代军治. 燕辽成矿带钼(铜)矿床成矿作用及成矿动力学背景[D]. 北京:中国地质科学院, 2008. Dai Junzhi.The Metallogeneses and Geodynamic Settings of Molybdenum(Copper) Deposits in Yan-Liao Metallogenic Belt[D]. Beijing:Chinese Academy of Geological Sciences,2008.
[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[2] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[3] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[4] 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382.
[5] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[6] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[7] 石洪召, 范文玉, 王冬兵, 王显峰, 谭耕莉. 云南普朗斑岩型铜多金属矿床气液隐爆角砾岩的发现及其找矿意义[J]. 吉林大学学报(地球科学版), 2017, 47(3): 751-759.
[8] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[9] 张朋, 杨宏智, 李斌, 寇林林, 杨凤超. 辽东青城子矿集区姚家沟钼矿床成矿物质来源、成矿年代及成矿动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1684-1696.
[10] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[11] 张延军, 孙丰月, 李碧乐, 李良, 陈扬. 青海湟中县三岔金矿流体包裹体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1342-1353.
[12] 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367.
[13] 王科强, 张德会, 朱玉娣, 付芬, 印贤波, 王晨昇. 浙江常山里山岭斑岩型铜矿床成岩时代及岩浆源区[J]. 吉林大学学报(地球科学版), 2016, 46(3): 736-748.
[14] 吴海枝, 韩润生, 吴鹏. 楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 398-411.
[15] 王可勇, 付丽娟, 韦烈民, 王志高. 辽宁榛子沟铅锌矿床热液叠加成矿作用特征及成矿流体来源[J]. 吉林大学学报(地球科学版), 2016, 46(1): 80-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!