吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 364-372.doi: 10.13278/j.cnki.jjuese.20170248

• 地球物理数据处理与解释技术 • 上一篇    下一篇

全极化探地雷达地下管道分类识别技术

冯晅1,2, 梁帅帅2, 恩和得力海2, 张明贺2, 董泽君2, 周皓秋2, 齐嘉慧2, 赵玮昌3   

  1. 1. 吉林大学地球信息探测仪器教育部重点实验室, 长春 130026;
    2. 吉林大学地球探测科学与技术学院, 长春 130026;
    3. 河北省地矿局第一地质大队, 河北 邯郸 056001
  • 收稿日期:2017-09-07 出版日期:2018-03-26 发布日期:2018-03-26
  • 作者简介:冯晅(1973-),男,教授,主要从事探地雷达信号处理技术和勘探地震数据处理技术研究,E-mail:fengxuan@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFC0600505)

Classification and Recognition Technology of Underground Pipelines with Full Polarimetric GPR

Feng Xuan1,2, Liang Shuaishuai2, Enhedelihai Nilot2, Zhang Minghe2, Dong Zejun2, Zhou Haoqiu2, Qi Jiahui2, Zhao Weichang3   

  1. 1. Key Laboratory of Geophysical Exploration Equipment, Ministry of Education, Jilin University, Changchun 130026, China;
    2. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    3. No.1 Geological Brigade of Hebei Geology and Mineral Exploration Bureau, Handan 056001, Hebei, China
  • Received:2017-09-07 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Key Research and Development Program of China(2016YFC0600505)

摘要: 常规探地雷达大多数是单极化雷达,单极化雷达只能获得单极化数据,对复杂环境中管道准确快速地识别比较困难。为了解决此问题,本文采用了全极化探地雷达识别管道的方法,提取了单一管道目标、多个管道目标中任何一个管道目标和受其他目标影响的管道目标的极化属性。结果表明,全极化探地雷达技术对处于极化属性受到影响环境下的管道目标均能较好地识别。因此,全极化探地雷达能够获得更加全面的目标体极化信息,有效地解决了复杂环境中管道准确快速识别比较困难的问题。

关键词: 探地雷达, 全极化, H/α分解, 管道探测

Abstract: Most conventional ground penetrating radar (GPR) is single polarimetric radar, which can only obtain single polarimetric data, and is difficult to identify the pipeline accurately and quickly in a complex environment. In order to identify the pipelines in a complex environment, we applied the method of full polarimetric GPR to identify the pipeline. We extracted the polarimetric attributes of a single pipeline and the polarimetric attributes of the pipeline influenced by other targets. The results show that the target can be well recognized,although its polarimetric attributes are under the influence of other targets. The method of full polarimetric GPR can get more comprehensive polarimetric information of a target,and can effectively and quickly identify a pipeline in a complex environment.

Key words: ground penetrating radar (GPR), full polarization, H/α decomposition, the pipeline detection

中图分类号: 

  • P64
[1] 张鹏,董韬,马彬,等. 基于探地雷达的地下管线管径探测与判识方法[J]. 地下空间与工程学报,2015, 11(4):1023-1032. Zhang Peng, Dong Tao, Ma Bin, et al. Research on Interpreting the Information of Underground Pipeline's Diameter Detected by GPR[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(4):1023-1032.
[2] 陈义群,肖柏勋. 论探地雷达现状与发展[J]. 工程地球物理学报,2004, 2(2):149-155. Chen Yiqun, Xiao Boxun.On the Status Quo and Development of Ground Penetrating Radar[J]. Chinese Journal of Engineering Geophysics, 2004, 2(2):149-155.
[3] 张文军. 基于雷达的地下管道探测关键技术研究[D]. 长春:长春理工大学,2016. Zhang Wenjun. Research on Key Technology of Underground Pipeline Detection Based on Radar[D]. Changchun:Changchun University of Science and Technology, 2016.
[4] 张文波,魏文博,景建恩,等. 利用探地雷达的极化特性检测建筑物结构[J]. 吉林大学学报(地球科学版),2008, 38(1):156-160. Zhang Wenbo, Wei Wenbo, Jing Jian'en, et al. Application of Ground Penetrating Radar Polarization in the Concrete Structure Detection[J]. Journal of Jilin University(Earth Science Edition), 2008, 38(1):156-160.
[5] 汪梦奇. 分时极化雷达系统及其实现技术研究[D]. 北京:北京理工大学,2015. Wang Mengqi. The Studies on Time-Division Polarimetric Radar System and Its Implementation Technology[D]. Beijing:Beijing Institute of Technology, 2015.
[6] 李丽丽,冯晅,鹿琪,等. 极化步频探地雷达系统初步研究[J]. 吉林大学学报(地球科学版),2008, 38(1):150-152. Li Lili, Feng Xuan, Lu Qi, et al. Preliminary Study on Polarization Step Frequency Radar Systems[J]. Journal of Jilin University(Earth Science Edition), 2008, 38(1):150-152.
[7] 于月. 全极化探地雷达H/α特征分解技术研究[D]. 长春:吉林大学,2016. Yu Yue. Development of H-Alpha Feature Decomposition Technology For Full-Polarimetric Ground Penetrating Radar[D]. Changchun:Jilin University, 2016.
[8] 梁文婧. 全极化步进频率探地雷达硬件系统研究[D]. 长春:吉林大学,2012. Liang Wenjing. Full-Polarimetric Step-Frequency GPR System Research[D]. Changchun:Jilin University, 2012.
[9] 李丽丽. 全极化探地雷达采集系统及校准技术初探[D]. 长春:吉林大学,2010. Li Lili. Fully-Polarimetric GPR Acquisition System and Calibration Technique Preliminary Study[D]. Changchun:Jilin University, 2010.
[10] Xuan F, Yue Y, Cai L, et al. Subsurface Polarimetric Migration Imaging for Full Polarimetric Ground-Penetrating Radar[J]. Geophysical Journal International, 2015, 202(2):1324-1338.
[11] 邹立龙. 全极化探地雷达正演模拟及极化校准技术[D]. 长春:吉林大学,2012. Zou Lilong. Forward Modeling and Calibration Technique of Full-Polarimetric GPR[D]. Changchun:Jilin University, 2012.
[12] 尤志鑫. 探地雷达地下浅层砂体和管道探测技术研究[D]. 长春:吉林大学,2016. You Zhixin. Study of Underground Shallow Sandstone and Pipeline with Ground Penetrating Radar[D]. Changchun:Jilin University, 2016.
[13] Huynen J R. A Revisitation of the Phenomenological Approach with Applications to Radar Target Decomposition[R]. University of Illinois at Chicago:Department of Electrical Engineering and Computer Sciencesrr, 1982.
[14] Lee J S, Pottier E. 极化雷达成像基础与应用[M]. 北京:电子工业出版社,2013. Lee J S, Pottier E. Fundamentals and Applications of Polarimetric Radar Imaging[M]. Beijing:Publishing House of Electronics Industry, 2013.
[15] Cloude S R, Pottier E. An Entropy Based Classifi-cation Scheme for Land Applications of Polarimetric SAR[J]. IEEE Trans Geosci Remote Sens, 1997, 35(1):68-78.
[16] Zhao J G, Sato M. Radar Polarimetry Analysis Applied to Single-Hole Fully Polarimetric Borehole Radar[J]. IEEE Trans Geosci Remote Sens, 2006, 44(12):3547-3554.
[17] Yilmaz Ö, Doherty S M. Seismic Data Analysis:Processing, Inversion, and Interpretation of Seismic Data[M]//2nd ed. Tulsa:Soc Exploration Geophys, 2001.
[18] Lauren F F, Pottier E, Lee J S. Unsupervised Classification of Multifrequency and Fully Polarimetric SAR Images Based on the H/A/Alpha-Wishart Classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11):2332-2342.
[19] Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised Classification of Polarimetric SAR Images by Applying Target Decomposition and Complex Wishart Distribution[J]. IEEE Trans Geosci Remote Sensing, 1999, 37:2249-2258.
[20] Lee J S, Schuler D L, Ainsworth T L. Polarimetric SAR Data Compensation for Terrain Azimuth Slope Variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2153-2163.
[21] Lee J S, Schuler D L, Ainsworth T L, et al. On the Estimation of Radar Polarization Orientation Shifts Induced by Terrain Slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1):30-41.
[22] Pottier E. Unsupervised Classification Scheme and Topography Derivation of POLSAR Data on the H/A/α Polarimetric Decomposition[C]//Theorem Proceedings of the 4th International Workshop on Radar Polarimetry. Nantes:Taylor & Francis Online, 1998:535-548.
[23] Pottier E, Boerner W M, Schuler D L. Estimation of Terrain Surface Azimuthal/Range Slopes Using Polarimetric Decomposition of POLSAR Data[C]//Proceedings of IGARSS 1999. Hambourg:IEEE, 1999.
[24] Schuler D L, Lee J S, Grandi G D. Measurement of Topography Using Polarimetric SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5):1266-1277.
[25] Schuler D L, Lee J S, Ainsworth T L, et al. Terrain Slope Measurement Accuracy Using Polarimetric SAR data[C]//Proceedings of IGARSS 1999. Hambourg:IEEE, 1999.
[26] Schuler D L, Lee J S, Ainsworth T L, et al. Pola-rimetric DEM Generation from POLSAR Image Information[C]//Proceedings of URSI-XXVIth General Assembly. Toronto:University of Toronto, 1999.
[27] Schuler D L, Lee J S, Ainsworth T L, et al. Terrain Topography Measurement Using Multipass Polarimetric Synthetic Aperture Radar Data[J]. Radio Science, 2000, 35(3):813-832.
[28] Fisher E, McMechan G A, Annan A P, et al. Exa-mples of Reverse-Time Migration of Single-Channel, Ground-Penetrating Radar Profiles[J]. Geophysics, 1992, 57(4):577-586.
[29] Lee J S, Pottier E. Polarimetric Radar Imaging:From Basics to Applications[M]. Boca Raton:University of Rochester, 2009.
[30] Cassidy N J. Evaluating LNAPL Contamination Using GPR Signal Attenuation Analysis and Dielectric Property Measurements:Practical Implications for Hydrological Studies[J]. J. Contaminant Hydrol, 2007, 94(1/2):49-75.
[1] 梁文婧, 冯晅, 刘财, 恩和得力海, 张明贺, 梁帅帅. 多输入多输出极化步进频率探地雷达硬件系统开发[J]. 吉林大学学报(地球科学版), 2018, 48(2): 483-490.
[2] 王文天, 刘四新, 鹿琪, 李宏卿, 傅磊. 基于改进残差法的定向钻孔雷达三维成像算法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 402-410.
[3] 王宪楠, 刘四新, 程浩. Shearlet变换在GPR数据随机噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1855-1864.
[4] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[5] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[6] 孟庆生, 韩凯, 刘涛, 高镇. 软土基坑隔水帷幕渗漏检测技术[J]. 吉林大学学报(地球科学版), 2016, 46(1): 295-302.
[7] 张丽丽, 刘四新, 吴俊军, 贾亮, 康晓涛. 基于分数阶傅里叶变换的探地雷达子波提取算法[J]. J4, 2012, 42(2): 569-574.
[8] 董航,刘四新,王春晖,曾昭发,鹿琪,王者江,易兵. 探地雷达测量近地表含水量的研究[J]. J4, 2009, 39(1): 163-0167.
[9] 薛建,贾建秀,黄航,易兵,张良怀,张羽. 应用探地雷达探测活动断层[J]. J4, 2008, 38(2): 347-0350.
[10] 张文波,魏文博,景建恩,贾正元. 利用探地雷达的极化特性检测建筑物结构[J]. J4, 2008, 38(1): 156-0160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!