吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 900-908.doi: 10.13278/j.cnki.jjuese.20170282

• 地球探测与信息技术 • 上一篇    下一篇

分数阶时间导数计算方法在含黏滞流体黏弹双相VTI介质波场模拟中的应用

胡宁, 刘财   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-09-16 出版日期:2018-05-26 发布日期:2018-05-26
  • 通讯作者: 刘财(1963-),男,教授,博士生导师,主要从事地震波场正反演理论、综合地球物理研究,E-mail:liucai@jlu.edu.cn E-mail:liucai@jlu.edu.cn
  • 作者简介:胡宁(1987-),男,博士研究生,主要从事地震波场正演理论研究,E-mail:jluhooning@163.com
  • 基金资助:
    国家自然科学基金重点项目(41430322)

Fractional Temporal Derivative Computation Method for Numerical Simulation of Wavefield in Viscous Fluid-Saturated Viscous Two-Phase VTI Medium

Hu Ning, Liu Cai   

  1. College of GeoExploration of Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-16 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by State Key Program of National Natural Science of China (41430322)

摘要: 相对于整数阶导数,分数阶微分算子可以更简洁地描述具有历史依赖性和空间全域相关性的复杂力学和物理过程。但是对分数阶波动方程进行数值模拟,计算量和存储量均较大,尤其对长时间或大计算域的模拟更是如此。文中给出了3种计算方法:全局记忆法、短时记忆法、自适应记忆法,并将这3种方法应用于含黏滞流体黏弹双相VTI (横向各向同性)介质分数阶波传播方程正演。通过对比3种方法的模拟精度、计算时间及占用内存发现:虽然短时记忆法可以通过设置短时记忆长度来调整计算时间与所占内存,但是短时记忆长度越短,精度越差;而自适应记忆法在保证精度的前提下,是短时记忆法与全局记忆法在计算时间与占用内存两方面的折衷。最后对各方法的利弊进行总结,为后续正演模拟及新的分数阶数值算法开发提供方法上的参考。在正演过程中,不仅要使所建模型更贴近实际地下介质,还需对选取的数值算法在计算时间、计算存储量和精度之间进行利弊权衡,以得到一个比较合理的数值算法。

关键词: 分数阶时间导数, 短时记忆法, 自适应记忆法, 黏弹, 双相介质

Abstract: Compared with the integer derivative, the fractional differential operator can describe a complex mechanical and physical process with historical dependence and spatial global correlation more succinctly. But the computational complexity and the storage capacity of the numerical simulation of fractional wave equations will increase, especially for the simulation of long or large computational domains. In this paper, three kinds of calculation methods are given:global memory method, short-term memory method, and adaptive memory method. These three methods were applied to the simulation of the fractional-order wave propagation equations in a vicious fluid-saturated vicious two-phase VTI medium. Comparing the simulation accuracy, calculation time and memory usage of the three methods, we found that although the short-term memory method could adjust the calculation time and memory by setting the short-term memory length, the shorter the short-term memory length, the worse the accuracy. On the premise of ensuring accuracy, the adaptive memory method is a compromise between the short-term memory and the global memory methods in terms of calculation time and memory occupation. In the process of forward modeling, not only should the model be closer to the actual underground media, but also the selected numerical algorithm needs to balance the calculation time, the calculated storage capacity, and the precision. This method provides a reference for the follow-up forward modeling and the development of the new fractional numerical algorithm.

Key words: fractional temporal derivative, short-term memory method, adaptive memory method, viscoelasticity, two-phase medium

中图分类号: 

  • P631.4
[1] Biot M A. General Theory of Three-Dimensional Con-solidation[J]. J Appl Phys, 1941, 12:155-164.
[2] Dvorkin J, Nur A. Dynamic Poroelasticity:A Unified Model with the Squirt and the Biot Mechanisms[J]. Geophysics, 1993,58:524-533.
[3] Diallo M S, Appel E. Acoustic Wave Propagation in Saturated Porous Media:Reformulation of the Biot/Squirt Flow Theory[J]. J Appl Geophys, 2000, 44:313-325.
[4] Liu Q R, Katsube N J. The Discovery of a Second Kind of Rotational Wave in Fluid Filled Porous Material[J]. The Journal of the Acoustical Society of America, 1990, 88(2):1045-1053.
[5] Kjartansson E. Constant-Q Wave Propagation and At-tenuation[J]. Journal of Geophysical Research, 1979, 84:4737-4748.
[6] Carcione J M. Time-Domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives[J]. Pure and Applied Geophys, 2002, 159:1719-1736.
[7] Podlubny. Fractional Differential Equations[Z]. San Diego:Academic Press, 1999.
[8] Sprouse B P. Computational Efficiency of Fractional Diffusion Using Adaptive Time Step Memory[Z]. Dissertations & Theses-Gradworks, 2010.
[9] Caputo M, Mainardi F. Linear Models of Dissipation in Anelastic Solids[J]. La Rivista del Nuovo Cimento, 1971, 1(2):161-198.
[10] 林孔容. 关于分数阶导数的几种不同定义的分析与比较[J]. 闽江学院学报, 2003, 24(5):3-6. Lin Kongrong, Analysis and Comparision of Different Definition About Fractional Integrals and Derivatives[J]. Journal of Minjiang University, 2003,24(5):3-6.
[11] 卢明辉,巴晶,杨慧珠. 含粘滞流体孔隙介质中的弹性波[J].工程力学,2009,26(5):36-40. Lu Minghui,Ba Jing,Yang Huizhu. Propagation of Elastic Waves in a Viscous Fluid-Saturated Prorous Solid[J]. Engineering Mechanics, 2009, 26(5):36-40.
[12] Yang D H, Zhang Z J. Poroelastic Wave Equation Including the Biot/Squirt Mechanism and the Solid/Fluid Coupling Anisotropy[J]. Wave Motion, 2002, 35(3):223-245.
[13] 刘财,兰慧田,郭智奇,等. 基于改进BISQ机制的双相HTI介质波传播伪谱法模拟与特征分析[J].地球物理学报, 2013, 56(10):3461-3473. Liu Cai, Lan Huitian, Guo Zhiqi, et al. Pseudo-Spectral Modeling and Feature Analysis of Wave Propagation in Two-Phase HTI Medium Based on Reformulated BISQ Mechanism[J]. Chinese Journal of Geophysics, 2013, 56(10):3461-3473.
[14] Qiao Z H. Theory and Modelling of Viscoelastic Ani-sotropic Media Using Fractional Time Derivative[C]//78th EAGE Conference & Exhibition 2016.[S. l.]:EAGE, 2016.
[15] 董良国,马在田,曹景忠. 一阶弹性波动方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报,2000,43(6):856-864. Dong Liangguo, Ma Zaitian, Cao Jingzhong. A Study on Stability of the Staggered-grid High-Order Difference Method of First-Order Elastic Wave Equation[J]. Chinese Journal of Geophysics,2000, 43(6):856-864.
[16] Cerjan C, Kosloff D, Kosloff R, et al. A Nonref-lecting Boundary Condition for Discrete Acoustic and Elastic Wave Equation[J]. Geophysics, 1985, 50(4):705-708.
[1] 叶云飞, 孙建国, 张益明, 熊凯. 基于立体层析反演的低频模型构建在深水区储层反演中的应用:以南海深水W构造为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1253-1259.
[2] 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267.
[3] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[4] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[5] 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889.
[6] 周进举, 王德利, 李博文, 李强, 王睿. 基于解耦传播的波场分解方法在VTI介质弹性波逆时偏移中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 909-921.
[7] 孙建国, 苗贺. 基于Chebyshev走时逼近的三维多次反射射线计算[J]. 吉林大学学报(地球科学版), 2018, 48(3): 890-899.
[8] 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933.
[9] 刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博. 工程地震折射波解释方法研究进展[J]. 吉林大学学报(地球科学版), 2018, 48(2): 350-363.
[10] 单刚义, 韩立国, 张丽华. 基于模型约束的Kirchhoff积分法叠前深度成像[J]. 吉林大学学报(地球科学版), 2018, 48(2): 379-383.
[11] 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349.
[12] 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533.
[13] 徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 深地震反射剖面揭示的西藏娘热矿集区上地壳结构[J]. 吉林大学学报(地球科学版), 2018, 48(2): 556-565.
[14] 王通, 王德利, 冯飞, 程浩, 魏敬轩, 田密. 三维稀疏反演多次波预测及曲波域匹配相减技术[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1865-1874.
[15] 卢燕红, 吴兆营, 丁广, 付琦, 张帆. 吉林前郭5.8级震区上地壳速度结构[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1894-1903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!