吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 934-940.doi: 10.13278/j.cnki.jjuese.20170214

• 地球探测与信息技术 • 上一篇    

Apollo16登月区Hapke模型参数反演及模型敏感性分析

辛欣, 陈圣波, 覃文汉, 李东辉, 陆天启, 田粉粉   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-09-25 出版日期:2018-05-26 发布日期:2018-05-26
  • 通讯作者: 陈圣波(1967-),男,教授,博士生导师,主要从事遥感技术研究,E-mail:chensb@jlu.edu.cn E-mail:chensb@jlu.edu.cn
  • 作者简介:辛欣(1993-),女,硕士研究生,主要从事定量遥感反演与应用研究,E-mail:xinxin_1123@foxmail.com
  • 基金资助:
    国家自然科学基金项目(41490630,41372337);国家科技重大专项(04-Y20A35-9001-15/17)

Hapke Model Parameter Inversion of Apollo 16 Landing Area and Model Sensitivity Analysis

Xin Xin, Chen Shengbo, Qin Wenhan, Li Donghui, Lu Tianqi, Tian Fenfen   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-25 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41490630, 41372337) and National Science and Technology Major Project of the Ministry of Science and Technology of China (04-Y20A35-9001-15/17)

摘要: 月表光度行为描述了月表物质反射的太阳光随入射、出射和太阳相角的变化,其反射率的不同取决于月壤颗粒大小、粒子形状、透明度、孔隙度、表面粗糙度等因素。为了分析月表光度行为,了解区域反射率差异原因,本文以Apollo16登月区为例,使用M3(moon mineralogy mapper)数据反演Hapke模型物理参数,并分析了Hapke模型光度参数对二向性反射率的影响程度。反演结果显示,本文研究区域光度参数bhS变化很小,光度参数w有一定的变化;表明本文研究区域反射率不同主要是w的差异造成的。研究区域月壤中各类矿物颗粒的前向散射占主导地位,月壤结构和粒径总体相近,但在孔隙度、风化层填充物状态及表面粗糙度等因素中至少有一种因素存在差异。

关键词: 反射率, 光度行为, M3数据, Hapke模型

Abstract: The photometric behavior of the moon's surface describes how the reflected solar radiation varies with incidence, emission, and solar phase angles, depending on the physical and chemical properties of the lunar soils, such as the particle size, the shape, the porosity, and the mineralogical composition. In order to analyze the lunar photometric behavior and understand the reason of regional differences, we retrieved the photometric parameters of Hapke model using the moon mineralogy mapper data in the Apollo 16 landing area. The influence of the Hapke model photometric parameters on the bidirectional reflectance was analyzed. The inversion results showed that the parameter b and hS of the model varied slightly, while the parameter w of the model changed to certain extent. The difference of reflectance is mainly caused by the w in the study area. The mineral particles in the study area in lunar soil forward scattering dominates. The soil structure and particle size are overall similar, but at least one factor of the porosity, the weathering layer filling state, the surface roughness and other factors is different.

Key words: reflectance, photometric behavior, M3 data, Hapke model

中图分类号: 

  • P691
[1] Hapke B.Theory of Reflectance and Emittance Spec-troscopy[M]. 2nd ed. New York:Cambridge University Press, 2012.
[2] 张江, 凌宗成. 月球表面光度行为的地域依赖性分析[J]. 中国科学:物理学力学天文学, 2013, 43(11):1465-1469. Zhang Jiang, Ling Zongcheng. Terrain Dependence of the Lunar Surface Photometric Behavior[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2013, 43(11):1465-1469.
[3] Minnaert M. The Reciprocity Principle in Lunar Pho-tometry[J]. Astrophysical Journal, 1941, 93(3):403-410.
[4] Shkuratov Y G, Kreslavsky M A.A Model of Lunar Photometric Function[C]//Lunar and Planetary Science Conference. Cambridge:NASA Astrophysics Data System, 1998.
[5] 李先, 陈圣波, 王旭辉,等. 基于辐射传输模型的水底反射率定量遥感反演研究[J]. 吉林大学学报(地球科学版), 2008,38(增刊1):235-237. Li Xian, Chen Shengbo, Wang Xuhui, et al. Study Based in Radioactive Transfer Model of the Quantitative Remote Sensing of Water Bottom Reflectance[J]. Journal of Jilin University (Earth Science Edition), 2008,38(Sup. 1):235-237.
[6] 崔腾飞. 月表矿物二向性反射模型研究[D]. 长春:吉林大学,2012. Cui Tengfei. Study on Bidirectional Reflectance Model of Mineral on Lunar Surface[D]. Changchun:Jilin University, 2012.
[7] 张江, 凌宗成, 李勃,等.月球Reiner Gamma漩涡地区物质的光度行为及分类[J]. 岩石学报,2016, 32(1):113-118. Zhang Jiang, Ling Zongcheng, Li Bo, et al. Photometric Behaviors and Classification of Reiner Gamma Swirl Materials[J]. Acta Petrologica Sinica, 2016, 32(1):113-118.
[8] 许学森, 刘建军, 刘斌,等.月表光度模型研究进展[J]. 遥感技术与应用,2016,31(4):634-644. Xu Xuesen, Liu Jianjun, Liu Bin, et al. Progress on Research of Lunar Photometric Model[J]. Remote Sensing Technology and Application, 2016, 31(4):634-644.
[9] Mcewen A. A Precise Lunar Photometric Function[C]//Lunar and Planetary Science Conference. Cambridge:NASA Astrophysics Data System, 1996.
[10] Johnson J R, Shepard M K, Grundy W M, et al. Spectrogoniometry and Modeling of Martian and Lunar Analog Samples and Apollo Soils[J]. Icarus, 2013, 223(1):383-406.
[11] Sato H, Robinson M S, Hapke B, et al. Resolved Hapke Parameter Maps of the Moon[J]. Journal of Geophysical Research:Planets, 2014, 119(8):1775-1805.
[12] Boardman J W, Pieters C M, Green R O, et al. Measuring Moonlight:An Overview of the Spatial Properties, Lunar Coverage, Selenolocation, and Related Level 1B Products of the Moon Mineralogy Mapper[J]. Journal of Geophysical Research Atmospheres, 2011, 116(6):100-114.
[13] Hapke B. Bidirectional Reflectance Spectroscopy:1:Theory[J]. Journal of Geophysical Research, 1981, 86(B4):3039-3054.
[14] 孟治国, 陈圣波, 崔腾飞,等. 基于嫦娥一号卫星激光高度计数据的月表有效反射率[J]. 吉林大学学报(地球科学版), 2010, 40(3):721-725. Meng Zhiguo, Chen Shengbo, Cui Tengfei, et al. Effective Reflectivity of the Lunar Surface Based on the Laser Altimeter Data from the Chang'E-1 Orbiter[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3):721-725.
[15] Wang J, White K, Robinson G J. Estimating Surface Net Solar Radiation by Use of Landsat-5 TM and Digital Elevation Models[J]. International Journal of Remote Sensing, 2000, 21(1):31-43.
[16] 田丰. 全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D]. 北京:中国地质大学(北京), 2010. Tian Feng. Identification and Quantitative Retrieval of Minerals Information Integrating VIS-NIR-MIR-TIR(0.35~25μm) Hysoectral Data[D]. Beijing:China University of Geosciences (Beijing), 2010.
[17] Hapke B. Bidirectional Reflectance Spectroscopy:7:The Single Particle Phase Function Hockey Stick Relation[J]. Icarus, 2012, 221(2):1079-1083.
[18] Hapke B. Bidirectional Reflectance Spectroscopy:5:The Coherent Backscatter Opposition Effect and Anisotropic Scattering[J]. Icarus, 2002, 157(2):523-534.
[1] 胡大千, 王岩泉, 沙茜, 王春光, 陈旭, 马瑞. 大兴安岭北部上古生界极低级变质温度——来自碳质物拉曼光谱的证据[J]. 吉林大学学报(地球科学版), 2015, 45(1): 188-197.
[2] 孟治国, 陈圣波, 崔腾飞, 连懿. 基于嫦娥一号卫星激光高度计数据的月表有效反射率[J]. J4, 2010, 40(3): 721-725.
[3] 付 广,王国民,王有功. 贝尔凹陷布达特群垂直裂缝垂向封闭性演化特征[J]. J4, 2007, 37(5): 913-0918.
[4] 程彬,姜琦刚,周云轩,湛邵斌. 基于ASTER数据遥感影像的决策树分类[J]. J4, 2007, 37(1): 179-0184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!