吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1260-1267.doi: 10.13278/j.cnki.jjuese.20170069

• 地球探测与信息技术 • 上一篇    下一篇

复杂地震波场的自适应流预测插值方法

刘一, 刘财, 刘洋, 勾福岩, 李炳秀   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-11-14 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 勾福岩(1983-),男,工程师,主要从事地震数据处理、测井数据处理等研究工作,E-mail:dshww1061@163.com E-mail:dshww1061@163.com
  • 作者简介:刘一(1987-),男,博士研究生,主要从事地震数据处理方法研究工作,E-mail:liuyi13@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41522404,41430322)

Adaptive Streaming Prediction Interpolation for Complex Seismic Wavefield

Liu Yi, Liu Cai, Liu Yang, Gou Fuyan, Li Bingxiu   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-11-14 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by State Key Program of National Natural Science of China (41522404, 41430322)

摘要: 地震数据本质上是非平稳的,如何解决复杂非平稳地震波场的数据缺失问题是地震勘探数据处理的重要环节之一。预测滤波器在地震数据处理和分析中具有重要的作用,该技术可以有效地解决地震数据缺失问题,但传统的平稳预测滤波方法无法很好地适应地震数据的非平稳特征;因此,开发高效的复杂地震波场自适应预测插值方法具有重要的工业价值。本文将预测滤波器加入"流处理"的概念,滤波器系数随着地震数据的变化同时更新,此计算过程仅需矢量点积运算,能够提高计算效率并降低内存空间;并以此为基础开发基于流预测滤波的地震数据插值方法。利用多次波的动力学信息,通过互相关技术构建虚拟一次波,有效地解决了缺失数据位置滤波系数估计不准的问题,为插值过程提供了更为合理的滤波器估计,更好地解决了非平稳地震数据的重建问题。对Sigsbee 2B模型和实际数据的测试结果表明,该方法可以合理地针对复杂地震信息完成缺失数据的重建。

关键词: 数据重建, 流预测滤波器, 非平稳地震数据, 虚拟一次波

Abstract: Seismic data is essentially nonstationary. How to solve the problem of missing data interpolation problem for complex nonstationary seismic wave fields is one of the keys in data processing. Prediction filters play an important role in the seismic data processing and analysis. The technology can solve the data missing problem efficiently; however, the traditional stationary prediction filter cannot fit the nonstationary feature of seismic data, so to develop an adaptive prediction interpolation method for complex seismic wave fields has an important industrial value. In the paper, we introduced the conception of "Streaming" into the prediction filter, the filter can update its coefficients incrementally by accepting one new data point at one time. This process only needs to compute the vector dot product, which improves the operation efficiency and reduces the memory space. In addition, we can do the inverse operation for seismic data by using the streaming prediction filter, which can reconstruct the missing data quickly and effectively. By using the multiple kinetic information to construct the pseudo-primaries through cross-correlation technology, we effectively solved the problem of inaccurate estimation of the filter coefficients in the missing data position, provided more reasonable filter estimates for the interpolation process, and reconstructed the nonstationary seismic data. that the filter estimation is inaccurate in the position of missing data. The pseudoprimaries provide reasonable filter estimation in the interpolation and can help solving the problem that the reconstruction of nonstationary seismic data better. The test results of the Sigsbee2B model and the field data show that the new method can reasonably reconstruct the missing data for complex seismic information.

Key words: data reconstruction, streaming prediction filter, nonstationary seismic data, pseudoprimary

中图分类号: 

  • P631.4
[1] Robinson E A, Osman O M. Deconvolution 2[M]. Tulsa:Society of Exploration Geophysicists, 1996.
[2] Canales L. Random Noise Reduction[J]. SEG Tech-nical Program Expanded Abstracts, 1984, 3(1):525-527.
[3] Liu G, Chen X, Du J, et al. Random Noise Attenu-ation Using f-x Regularized Nonstationary Autoregression[J]. Geophysics, 2012, 77(2):61-68.
[4] Spitz S. Seismic Trace Interpolation in the F-X Domain[J]. Geophysics, 1991, 56(6):785-794.
[5] Crawley S. Seismic Trace Interpolation with Nonsta-tionary Prediction-Error Filters[D]. Palo Alto:Stanford University, 2001.
[6] Abma R. Least-Squares Separation of Signal and Noise with Multidimensional Filters[D]. Palo Alto:Stanford University, 1995.
[7] 刘财,李鹏,刘洋,等. 基于seislet变换的反假频迭代数据插值方法[J]. 地球物理学报,2013,56(5):1619-1627. Liu Cai, Li Peng, Liu Yang, et al. Iterative Data Interpolation Beyond Aliasing Using Seislet Transform[J]. Chinese Journal of Geophysics, 2013, 56(5):1619-1627.
[8] Crawley S. Claerbout J. Interpolation With Smoothly Nonstationary Prediction-Error Filters[J]. SEG Technical Program Expanded Abstracts, 1999, 18:181-196.
[9] Curry W. Interpolation of Irregularly-Sampled Data with Nonstationary Multi-Scale Prediction-Error Filters[J]. SEG Technical Program Expanded Abstracts, 2003, 22(1):1913-1917.
[10] Fomel S. Shaping Regularization in Geophysical-Estimation Problems[J]. Geophysics, 2007, 24(1):R29-R36.
[11] Liu G, Chen X. Noncausal f-x-y Regularized Nonsnu-tationary Prediction Filtering for Random Noise Attenuation on 3D Seismic Data[J]. Journal of Applied Geophysics, 2013, 93(2):60-66.
[12] Liu Y, Fomel S. Seismic Data Interpolation Beyond Aliasing Using Regularized Nonstationary Autoregression[J]. Geophysics, 2011, 76(5):V69-V77.
[13] Fomel S, Claerbout J. Streaming Prediction-Error Filters[C]//SEG Technical Program Expanded.[S. l.]:SEG, 2016:4787-4791.
[14] Muijs R, Robertsson A J O, Holliger K. Prestack Depth Migration of Primary and Surface-Related Multiple Reflections:Part I:Imaging[J]. Geophysics, 2007, 72(2):3953-3957.
[15] Brown M. Least-Squares Joint Imaging of Multiples and Primaries[J]. Geophysics, 2004, 70(5):89-107.
[16] Shan G, Guitton A. Migration of Surface-Related Multiples:Tests on Sigsbee 2B Datasets[C]//SEG Technical Program Expanded Abstracts.[S. l.]:SEG, 2004:153-162.
[17] Curry W, Shan G. Interpolation of Near Offsets Using Multiples and Prediction-Error Filters[J]. Geophysics, 2010, 75(6):225-226.
[18] Guo S J, Li Z C, Tong Z Q, et al. Interpolation of Near Offset Using Surface-Related Multiples[J]. Applied Geophysics, 2011, 8(3):225-232.
[19] Hager W W. Updating the Inverse of a Matrix[J]. Siam Review, 1989, 31(2):221-239.
[20] Abma R, Kabir N, Matson K H, et al. Comparisons of Adaptive Subtraction Methods for Multiple Attenuation[J]. SEG Technical Program Expanded Abstracts, 2002, 21(1):277-280.
[21] Foster D J, Mosher C C. Suppression of Multiple Reflections Using the Radon Transform[J]. Geophysics, 1992, 57(3):386-395.
[22] 石颖, 刘洪, 历玉英. 逆数据域表面多次波压制方法[J]. 吉林大学学报(地球科学版), 2011, 41(1):271-276. Shi Ying, Liu Hong, Li Yuying. Surface-Related Multiple Attenuation Method Investigation in Inverse Data Domin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1):271-276.
[1] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[2] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[3] 叶云飞, 孙建国, 张益明, 熊凯. 基于立体层析反演的低频模型构建在深水区储层反演中的应用:以南海深水W构造为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1253-1259.
[4] 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889.
[5] 孙建国, 苗贺. 基于Chebyshev走时逼近的三维多次反射射线计算[J]. 吉林大学学报(地球科学版), 2018, 48(3): 890-899.
[6] 胡宁, 刘财. 分数阶时间导数计算方法在含黏滞流体黏弹双相VTI介质波场模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 900-908.
[7] 周进举, 王德利, 李博文, 李强, 王睿. 基于解耦传播的波场分解方法在VTI介质弹性波逆时偏移中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 909-921.
[8] 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933.
[9] 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349.
[10] 刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博. 工程地震折射波解释方法研究进展[J]. 吉林大学学报(地球科学版), 2018, 48(2): 350-363.
[11] 单刚义, 韩立国, 张丽华. 基于模型约束的Kirchhoff积分法叠前深度成像[J]. 吉林大学学报(地球科学版), 2018, 48(2): 379-383.
[12] 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533.
[13] 徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 深地震反射剖面揭示的西藏娘热矿集区上地壳结构[J]. 吉林大学学报(地球科学版), 2018, 48(2): 556-565.
[14] 王宪楠, 刘四新, 程浩. Shearlet变换在GPR数据随机噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1855-1864.
[15] 王通, 王德利, 冯飞, 程浩, 魏敬轩, 田密. 三维稀疏反演多次波预测及曲波域匹配相减技术[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1865-1874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!