吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (2): 514-525.doi: 10.13278/j.cnki.jjuese.20180072

• 地质工程与环境工程 • 上一篇    下一篇

吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响

骆祖江, 宁迪, 杜菁菁, 陆玮   

  1. 河海大学地球科学与工程学院, 南京 211100
  • 收稿日期:2018-04-04 出版日期:2019-03-26 发布日期:2019-03-28
  • 作者简介:骆祖江(1964-),男,教授,博士,主要从事水文地质、地下流体数值模拟等方面的研究,E-mail:luozujiang@sina.com
  • 基金资助:
    中国地质调查局项目(121201208000160015)

Influence of Building Load and Groundwater Exploitation on Land Subsidence in Shengze,Wujiang

Luo Zujiang, Ning Di, Du Jingjing, Lu Wei   

  1. School of Earth Science and Engineering, Hohai University, Nanjing 211100, China
  • Received:2018-04-04 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by Project of China Geological Survey (121201208000160015)

摘要: 为了准确分析建筑荷载和地下水开采对地面沉降的影响,为吴江盛泽地区科学防控地面沉降提供决策依据,基于比奥固结和地下水渗流理论,建立了建筑荷载和地下水开采与地面沉降三维全耦合有限元数值模型,分别模拟预测了在建筑荷载单独作用、地下水开采单独作用及建筑荷载和地下水开采叠加作用三种情况下,2015-09-01-2030-08-31盛泽地区逐年地面沉降变化趋势。结果表明,建筑荷载对盛泽地区地面沉降的影响大于地下水开采。第Ⅰ黏性土弱含水层和第I承压含水层分别为建筑荷载和地下水开采单独作用下的主压缩层,单层压缩量占比分别为43.04%和54.06%;第Ⅰ承压含水层及其上覆第Ⅰ黏性土弱含水层是二者叠加作用引发土体变形的主压缩层,其压缩量之和占总压缩量的71.30%。建筑荷载和地下水开采单独作用下引发的地面沉降量的线性叠加之和大于二者叠加作用下引发的地面沉降量,建筑荷载和地下水开采叠加作用引发的地面沉降具有耦合效应。

关键词: 吴江盛泽, 建筑荷载, 地下水开采, 地面沉降, 耦合效应

Abstract: In order to provide decision-making basis for prevention and control of land subsidence in Shengze of Wujiang, the authors analyzed the influence of building load and groundwater exploitation on land subsidence. Based on the Biot's consolidation theory and ground water seepage theory, a three-dimensional fully coupled mathematical model of building load, groundwater exploitation on land subsidence was established. By using this model, the trend of land subsidence was simulated from 2015-09-01 to 2030-08-31 under the conditions of only building load, only groundwater exploitation, and the superposition of building load and groundwater exploitation. According to the prediction results, the effect of building load on land subsidence in Shengze is greater than that of groundwater exploitation. With the first weak clayed soil aquifer and the first confined aquifer as the main compressible layers, under the individual action, the single-layer compression accounted for 43.04% and 54.06% respectively; while with the first confined aquifer and its overlying weak clay soil aquifer as the main compression layer of the superposition of the building load and the groundwater exploitation, the total compression amount accounted for 71.30% of the total compression. The sum of the linear superposition of ground subsidence caused by the building load and groundwater exploitation alone is larger than the ground subsidence caused by the superposition of the two.The land subsidence caused by the superposition of the building load and the groundwater exploitation has a coupling effect.

Key words: Shengze, Wujiang, building load, groundwater exploitation, land subsidence, coupling effect

中图分类号: 

  • P642.26
[1] 赵文涛,李亮.苏锡常地区地面沉降机理及防治措施[J].中国地质灾害与防治学报,2009,20(1):88-93. Zhao Wentao,Li Liang.The Mechanism of Land Subsidence and Its Prevention Measures in Suzhou-Wuxi-Changzhou Area[J].The Chinese Journal of Geological Hazard and Control,2009,20(1):88-93.
[2] Shi Xiaoqing,Fang Rui,Wu Jichun,et al.Sustainable Development and Utilization of Groundwater Resources Considering Land Subsidence in Suzhou,China[J]. Engineering Geology,2011,124:77-89.
[3] 于军,苏小四,朱琳,等.苏锡常地区地面沉降地质结构三维可视化模型虚拟现实系统研究[J].吉林大学学报(地球科学版),2007,47(2):393-399. Yu Jun,Su Xiaosi,Zhu Lin,et al.Research of 3D Visualized Strata Model Virtual Reality System of Land Subsidence in Suzhou-Wuxi-Changzhou Area[J].Journal of Jilin University(Earth Sicence Edition),2007,47(2):393-399.
[4] 施小清,冯志祥,姚炳奎,等.苏锡常地区深层地下水禁采后土层变形特征分析[J].第四纪研究,2014,34(5):158-167. Shi Xiaoqing,Feng Zhixiang,Yao Bingkui,et al.Analysis of Deformation Characteristics of Soil Layer After Deep Groundwater Withdrawal in Suzhou-Wuxi-Changzhou Area[J]. Quaternary Sciences,2014,34(5):158-167.
[5] Zhu Juyan,Guo Haipeng.Relation Between Land Subsidence and Deep Groundwater Exploitation in Cang Zhou City[J].Advanced Materials Research,2013,864/865/866/867:2213-2217.
[6] Larson K J,Başaǧaoǧlu Mariño H M A. Prediction of Optimal Safe Groundwater Yield and Land Subsidence in the Los Banos-Kettleman City Area,California,Using a Calibrated Numerical Simulation Model[J].Journal of Hydrology,2001,242(1/2):25-43.
[7] Chen Xingxian,Luo Zujiang,Zhou Shiling. Influences of Soil Hydraulic and Mechanical Parameters on Land Subsidence and Ground Fissures Caused by Groundwater Exploitation[J].Journal of Hydrody-namics:Series B, 2014,26(1):155-164.
[8] 孙晓涵,彭建兵,崔向美,等.山西太原盆地地裂缝与地下水开采、地面沉降关系分析[J].中国地质灾害与防治学报,2016,27(2):91-98. Sun Xiaohan,Peng Jianbing,Cui Xiangmei,et al.Relationship Between Ground Fissures,Groundwater Exploration and Land Subsidence in Taiyuan Basin[J].Chinese Journal of Geological Hazard and Control,2016,27(2):91-98.
[9] 熊小锋,施小清,吴剑锋,等.弹塑性变形条件下抽水引起的地面沉降三维数值模拟[J].水文地质工程地质,2017,44(2):151-159. Xiong Xiaofeng,Shi Xiaoqing,Wu Jianfeng,et al.3D Numerical Simulation of Elasto-Plastic Land Subsidence Induced by Groundwater Pumping[J].Hydrogeology and Engineering Geology,2017,44(2):151-159.
[10] Cui Zhendong,Tang Yiqun. Land Subsidence and Pore Structure of Soils Caused by the High-Rise Building Group Through Centrifuge Model Test[J].Engineering Geology,2010,113(1):1-4.
[11] 赵悦文.集群建筑荷载在地面沉降中的作用研究[D].北京:中国地质科学院,2017. Zhao Yuewen.Study onthe Role of Cluster Land Subsidence[D].Beijing:Chinese Academy of Geological Sciences,2017.
[12] 付延玲,骆祖江,廖翔,等.高层建筑引发地面沉降模拟预测三维流固全耦合模型[J].吉林大学学报(地球科学版),2016,46(6):1781-1789. Fu Yanling,Luo Zujiang,Liao Xiang,et al.A Three-Dimensional Full Coupling Model to Simulate and Predict Land Subsidence Caused by Hihg-Rise Buliding[J]. Journal of Jilin University (Earth Sicence Edition),2016,46(6):1781-1789.
[13] 丁德民,马凤山,张亚民,等.高层建筑物荷载与地下水开采叠加作用下的地面沉降特征[J].工程地质学报,2011,19(3):433-439. Ding Demin,Ma Fengshan,Zhang Yamin,et al.Characteristics of Land Subsidence Due to Both High-Rise Building and Exploition of Groundwater in Urban Area[J].Journal of Engineering Geology,2011,19(3):433-439.
[14] 钱家欢,殷宗泽.土工原理与计算[M].北京:水力水电出版社,1996. Qian Jiahuan,Yin Zongze. Principle and Calculation of Geotechnics[M]. Beijing:Waterpower Press,1996.
[15] 骆祖江,王琰,田小伟,等.沧州市地下水开采与地面沉降地裂缝模拟预测[J].水利学报,2013,44(2):198-204. Luo Zujiang,Wan Yan,Tian Xiaowei,et al. Simulating and Forecasting of Groundwater Exploitation,Land Subsidence and Ground Fissure in Cangzhou City[J].Journal of Hydraulic Engineering,2013,44(2):198-204.
[16] 陈崇希,裴顺平.地下水开采-地面沉降模型研究[J].水文地质工程地质,2001,28(2):5-8. Chen Chongxi,Pei Shunping.Groundwater Pumping and Land Subsidence Model Research[J].Hydrogeology and Engineering Geology,2001,28(2):5-8.
[17] 陈兴贤,骆祖江,金玮泽,等.高层建筑荷载、地下水开采与地面沉降耦合研究[J].应用基础与工程科学学报,2015,23(2):285-298. Chen Xingxian,Luo Zujiang,Jin Weize,et al.Study of High-Rise Building Load,Groundwater Seepage and Land Subsidengce[J].Journal of Basic Science and Engineering,2015,23(2):285-298.
[18] 彭国伦.Fortan95程序设计[M].北京:中国电力出版社,2005. Peng Guolun.Fortran 95[M].Beijing:China Electric Power Press,2005.
[1] 陈雄, 张岩, 王艺伟, 叶淑君, 吴吉春, 于军, 龚绪龙. 苏北沿海三市三维地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1434-1450.
[2] 王洁, 宫辉力, 陈蓓蓓, 高明亮, 周超凡, 梁悦, 陈文锋. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3): 836-845.
[3] 周超凡, 宫辉力, 陈蓓蓓, 贾煦, 朱锋, 郭琳. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1511-1520.
[4] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[5] 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594.
[6] 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965.
[7] 李文运, 崔亚莉, 苏晨, 张伟, 邵景力. 天津市地下水流-地面沉降耦合模型[J]. J4, 2012, 42(3): 805-813.
[8] 付延玲. 基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J]. J4, 2012, 42(2): 476-484.
[9] 方樟, 肖长来, 姚淑荣, 马喆, 许斌, 任妍儒. 黑龙江宝清露天煤矿首采区多层含水层地下水数值模拟[J]. J4, 2010, 40(3): 610-616.
[10] 骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究[J]. J4, 2009, 39(6): 1080-1088.
[11] 于 军,苏小四,朱 琳,段福洲,高 立,吴曙亮. 苏锡常地区地面沉降地质结构三维可视化模型虚拟现实系统研究[J]. J4, 2007, 37(2): 393-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!