吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (2): 569-577.doi: 10.13278/j.cnki.jjuese.20170311

• 地球探测与信息技术 • 上一篇    下一篇

基于局部重力场建模的Tikhonov正则化点质量核径向基函数方法

冯进凯, 王庆宾, 黄炎, 范雕   

  1. 信息工程大学地理空间信息学院, 郑州 450001
  • 收稿日期:2017-11-24 出版日期:2019-03-26 发布日期:2019-03-28
  • 作者简介:冯进凯(1992-),男,硕士研究生,主要从事物理大地测量研究,E-mail:fengjinkai1992@163.com
  • 基金资助:
    国家重点基础研究发展计划("973"计划)(6132220202);国家自然科学基金项目(41774018,41504018)

Point-Mass Kernel RBF Model Based on Tikhonov Regularization

Feng Jinkai, Wang Qingbin, Huang Yan, Fan Diao   

  1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2017-11-24 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by National Key Basic Research Program ("973" Program) of China (6132220202);National Natural Science Foundation of China (41774018, 41504018)

摘要: 针对点质量核径向基函数应用于局部重力场建模中的设计矩阵严重病态问题,本文引入Tikhonov正则化方法对传统点质量核径向基函数方程进行改造,建立了相应的正则化模型。通过模拟数据进行仿真实验,以传统格网化方法作为对比试验,利用"标靶法"确定两种模型的最优结构。实验结果表明:正则化点质量核径向基函数可以直接利用离散数据进行局部重力场建模。在两种模型的最优结构下,当实测数据无污染时,正则化方法达到与传统格网化方法相当的精度;当实测值中加入3 mGal的高斯白噪声时,正则化方法的精度获得了27.9%的提升。这说明本文方法可以应用于局部重力场建模中,且模型结构更优,抗干扰能力更强。

关键词: 局部重力场建模, 径向基函数, 点质量核基函数, Tikhonov正则化, Kriging格网化

Abstract: To solve the singularity of design matrix using the discretized data during the process in regional gravity modeling, the Tikhonov regularization method is introduced to transform the traditional point-mass kernel radial basis function model, and a corresponding regularization model is established. Experiments are conducted using some simulation data sets which are for model setting and model testing, besides a comparative experiment is designed based on traditional way in which the discretized data is gridded. Meanwhile the optimal structure of the two models are determined by ranging the parameters of them, such as the depth and the resolution. The results show that the regularized point mass kernel radial basis function can directly use the discretized data to model the local gravitational field. And the accuracy of the two models is equal when they are in their separate optimal structures with no error in the modeling data; while with 3 mGal-error White Gaussian Noise input, the regularization method put forward in this paper has improved by 27.9%, which means it can effectively restrain the error amplification caused by ill-conditioned design matrix, and the accuracy and stability are improved.

Key words: regional gravity field modeling, radial basis functions, point-mass kernel, Tikhonov regularization, Kriging gridding method

中图分类号: 

  • P223
[1] Moritz H.Advanced Physical Geodesy[M].London:Abacus Press,1980.
[2] Tenzer R,Klees R.The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling[J].Studia Geophysica et Geodaetica,2008,52(3):287-304.
[3] Lehmann R.The Method of Free-Positioned Point Masses:Geoid Studies on the Gulf of Bothnia[J].Bulletin Géodésique,1993,67(1):31-40.
[4] Bentel K,Schmidt M,Denby C R.Artifacts in Regional Gravity Representations with Spherical Radial Basis Functions[J].Journal of Geodetic Science,2013,3(3):173-187.
[5] 吴怿昊,罗志才,周波阳.基于泊松小波径向基函数融合多源数据的局部重力场建模[J].地球物理学报,2016,59(3):852-864. Wu Yihao,Luo Zhicai,Zhou Boyang.The Approach of Regional Geoid Refinement Based on Combining Multi-Satellite Altimetry Observations and Heterogeneous Gravity Data Sets[J].Chinese Journal of Geophysics,2016,59(3):852-864.
[6] Antunes C,Pail R,Catalāo J.Point Mass Method Applied to the Regional Gravimetric Determination of the Geoid[J].Studia Geophysica et Geodaetica,2003,47(1):495-509.
[7] 吴星,张传定,赵东明.基于球面边值问题的点质量调和分析方法[J].地球物理学报,2009,52(12):2993-3000. Wu Xing,Zhang Chuanding,Zhao Dongming.Point Mass Harmonic Analysis Method Based on Spherical Boundary Value Problem[J].Chinese Journal of Geophysics,2009,52(12):2993-3000.
[8] Tenzer R,Klees R.The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling[J].Studia Geophysica et Geodaetica,2008,52(3):287-304.
[9] 邹贤才,李建成.最小二乘配置方法确定局部大地水准面的研究[J].武汉大学学报(信息科学版),2004,29(3):218-222. Zou Xiancai,Li Jiancheng.A Local Geoid Determination Using Least-Squares Collocation[J].Editorial Board of Geomatics & Information Science of Wuhan University,2004,29(3):218-222.
[10] 欧阳永忠,邓凯亮,黄谟涛,等.确定大地水准面的Tikhonov最小二乘配置法[J].测绘学报,2012,41(6):804-810. Ouyang Yongzhong,Deng Kailiang,Huang Motao,et al.The Tikhonov-Least Squares Collocation Method for Determining Geoid[J].Acta Geodaetica et Cartographica Sinica,2012,41(6):804-810.
[11] 孙中苗.航空重力测量理论、方法及应用研究[D].郑州:信息工程大学,2004. Sun Zhongmiao.Theory,Method and Application of Airborne Gravimetry[D].Zhengzhou:Information Engineering University,2004.
[12] 沈云中,许厚泽.不适定方程正则化算法的谱分解式[J].大地测量与地球动力学,2002,22(3):10-14. Shen Yunzhong,Xu Houze.Spectral Decomposition Formula of Regularization Solution for Ill-Posed Equation[J].Journal of Geodesy & Geodynamics,200222(3):10-14.
[13] Golsorkhi M S.The Development and Evaluation of the Earth Gravitational Model 2008(EGM2008)[J].Journal of Geophysical Research,2012,117(B4):531-535.
[14] Claessens S J,Featherstone W E,Barthelmes F.Experiences with Point-Mass Gravity Field Modelling in the Perth Region,Western Australia[J].Journal of Geophysical Research Space Physics,2001,3(2):342-348.
[15] 李振海,汪海洪.重力数据网格化方法比较[J].大地测量与地球动力学,2010,30(1):140-144. Li Zhenhai,Wang Haihong.Comparison Among Methods for Gravity Data Gridding[J].Journal of Geodesy & Geodynamics,2010,30(1):140-144.
[16] 范雕,李姗姗,孟书宇,等.利用重力异常反演马里亚纳海沟海底地形[J].吉林大学学报(地球科学版),2018,48(5):1481-1492. Fan Diao,Li Shanshan,Meng Shuyu,et al.Inversion of Mariana Trench Seabed Terrain Using Gravity Anomalies[J].Journal of Jilin University (Earth Science Edition),2018,48(5):1481-1492.
[1] 杜威, 许家姝, 吴燕冈, 郝梦成. 位场垂向高阶导数的Tikhonov正则化迭代法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 394-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!