吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (2): 591-602.doi: 10.13278/j.cnki.jjuese.20180019

• 地球探测与信息技术 • 上一篇    下一篇

基于可控源电磁法阻抗信息的有限内存拟牛顿法三维反演

杨悦, 翁爱华, 张艳辉, 李世文, 李建平, 唐裕   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2018-01-27 出版日期:2019-03-26 发布日期:2019-03-28
  • 通讯作者: 翁爱华(1969-),男,教授,博士生导师,主要从事电磁法勘探三维正反演理论方法与地球电磁感应研究,E-mail:wengah@jlu.edu.cn E-mail:wengah@jlu.edu.cn
  • 作者简介:杨悦(1989-),女,博士研究生,主要从事电磁法勘探理论模拟与应用研究,E-mail:jlyangyue@126.com
  • 基金资助:
    国家重大科研仪器专项(2011YQ05006010)

Three-Dimensional Inversion Based on the Impedance Information of Controlled Source Electromagnetic Method by Limited Memory Quasi-Newton Method

Yang Yue, Weng Aihua, Zhang Yanhui, Li Shiwen, Li Jianping, Tang Yu   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2018-01-27 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by National Key Foundation for Exploring Scientific Instrument (2011YQ05006010)

摘要: 本文研究了利用阻抗信息进行可控源电磁勘探有限内存拟牛顿法三维反演的技术。首先用理论模型来验证有限内存拟牛顿法反演的准确性和可行性。观测参数为复阻抗Zxy分量,采用交错网格有限差分方法计算模型响应,反演采用有限内存拟牛顿法。数值模拟结果表明:有限内存拟牛顿法反演迭代速度较快,每4 min迭代一次,拟合差由146.00下降到1.78,收敛稳定;异常体的位置与理论模型吻合较好,有效地验证了有限内存拟牛顿法可控源三维反演的正确性。为了进一步验证该方法的实用性,将其应用到隐伏钼矿可控源电磁勘探工作中。工区的反演结果显示:在工区北西段深部存在高阻异常,其上为低阻异常。截取过钻孔的3号测线发现,-500~-100 m的位置表现为低阻,东侧存在向上涌起的高阻。推测此低阻为矿化蚀变带,延伸较深。该异常与钻探资料揭示的钼矿脉一致,证明了反演结果的准确性。因此,利用可控源观测得到的阻抗信息进行有限内存拟牛顿法三维反演,可以获得可靠的三维电阻率分布。

关键词: 有限内存拟牛顿法, 可控源电磁法, 三维反演, 隐伏钼矿

Abstract: In this paper, a three-dimensional limited memory quasi-Newton algorithm inversion for controlled source electromagnetic method based on impedance information is discussed. Firstly, the synthetic data from theoretical model is used to verify the accuracy and feasibility of the limited memory quasi-Newton inversion method. The observed data type is Zxy, using staggered grid finite difference method to calculate the forward responses, and the limited memory quasi-Newton algorithm to perform the inversion. The numerical simulations show that the limited memory quasi-Newton inversion method has fast iteration speed, 4 minutes in one iteration, and the fitting error decreases from 146.00 to 1.78 with stable convergence; the location of the anomalous body agrees well with the theoretical model, which validates the limited memory quasi-Newton method for three-dimensional inversion of controllable sources electromagnetic method. To further verify the practicability of this method, it is applied to the exploration of concealed molybdenum deposits. The inversion results show that there are high resistivity anomalies in the deep part of the northwest and low resistivity anomalies in the upper part of the survey area. The profile of line 3 through the borehole shows a high conductivity region at the depth of -500 m——100 m, and a high resistant anomaly in its east. It is speculated that the low resistivity zone is a mineralized alteration zone with deep extension. The anomaly is consistent with the molybdenum vein revealed by drilling data, which proves the accuracy of the inversion. Therefore, the reliable three-dimensional resistivity distribution can be obtained by inverting the impedance information with limited memory quasi-Newton three-dimensional inversion method.

Key words: limited memory quasi-Newton method, controlled source electromagnetic method, three-dimension inversion, hidden molybdenum mine

中图分类号: 

  • P631.3
[1] 翁爱华,刘佳音,贾定宇,等.有限长导线源频率测深有限内存拟牛顿一维反演[J].吉林大学学报(地球科学版),2017,47(2):597-605. Weng Aihua,Liu Jiayin,Jia Dingyu,et al.1-D Inversion for Controlled Source Electromagnetic Sounding Using Limited Memory Quasi-Newton Method[J].Journal of Jilin University (Earth Science Edition),2017,47(2):597-605.
[2] 贲放,刘云鹤,黄威,等.各向异性介质中的浅海海洋可控源电磁响应特征[J].吉林大学学报(地球科学版),2016,46(2):581-593. Ben Fang,Liu Yunhe,Huang Wei,et al.MCSEM Responses for Anisotropic Media in Shallow Water[J].Journal of Jilin University (Earth Science Edition),2016,46(2):581-593.
[3] 卢鸿飞,王志福,王恒,等.CSAMT测深和重力测量技术在哈密白山钼矿深部找矿和远景评价中的应用[J].地球物理学进展,2013,28(3):1547-1556. Lu Hongfei,Wang Zhifu,Wang Heng,et al.The Application of CSAMT and GS on Prospecting and Evalution in Baishan Molybdenum Deposit,Hami,Xinjiang[J].Progress in Geophysics,2013,28(3):1547-1556.
[4] 王大勇,李桐林,高远,等.CSAMT法和TEM法在铜陵龙虎山地区隐伏矿勘探中的应用[J].吉林大学学报(地球科学版),2009,39(6):1134-1140. Wang Dayong,Li Tonglin,Gao Yuan,et al.The Application of CSAMT and TEM to Exploration Buried Deposits in Longhu Mountain Area at Tongling,Anhui Province[J].Journal of Jilin University (Earth Science Edition),2009,39(6):1134-1140.
[5] Silva N V D,Morgan J V,Macgregor L,et al.A Finite Element Multifrontal Method for 3D CSEM Modeling in the Frequency Domain[J].Geophysics,2012,77(2):101-115.
[6] 张晋.可控源音频大地电磁法在河南省卢氏县水文地质构造调查中应用[D].长春:吉林大学,2014. Zhang Jin.The Application of Controlled Source Audio-Frequency Magnetotelluric in Lushi County of Henan Province Hydrology Geological Structure Survey[D].Changchun:Jilin University,2014.
[7] 吴小平,徐果明.利用共轭梯度法的电阻率三维反演研究[J].地球物理学报,2000,43(3):420-427. Wu Xiaoping,Xu Guoming.Study On 3-D Resistivity Inversion Using Conjugate Gradient Method[J].Chinese Journal of Geophysics,2000,43(3):420-427.
[8] 林昌洪,谭捍东,舒晴,等.可控源音频大地电磁三维共轭梯度反演研究[J].地球物理学报,2012,55(11):3829-3838. Lin Changhong,Tan Handong.Shu Qing,et al.Three-Dimensional Conjugate Gradient Inversion of CSAMT Data[J].Chinese Journal of Geophysics,2012,55(11):3829-3838.
[9] 翁爱华,刘云鹤,贾定宇,等.地面可控源频率测深三维非线性共轭梯度反演[J].地球物理学报,2012,55(10):3506-3515. Weng Aihua,Liu Yunhe,Jia Dingyu,et al.Three-Dimensional Controlled Source Electromagnetic Inversion Using Non-Linear Conjugate Gradients[J]. Chinese Journal of Geophysics,2012,55(10):3506-3515.
[10] 彭荣华,胡祥云,韩波.基于高斯牛顿法的频率域可控源电磁三维反演研究[J].地球物理学报,2016,59(9):3470-3481. Peng Ronghua,Hu Xiangyun,Han Bo.3D Inversion of Frequency-Domain CSEM Data Based on Gauss-Newton Optimization[J].Chinese Journal of Geophysics,2016, 59(9):3470-3481.
[11] Boyden C G.The Convergence of a Class of Double Rank Minimization Algorithms:The New Algorithm[J].Journal of the Institute of Mathematics and Applications,1970,6:222-231.
[12] Fletcher R.A New Approach to Variable Metric Algorithms[J].Computer Journal,1970,13:317-322.
[13] Goldfarb D.A Family of Variable Metric Methods Derived by Variational Means[J].Mathematics of Computation,1970,24:23-26.
[14] Shanno D F.Conditioning of Quasi-Newton Methods for Function Minimization[J].Mathematics of Computation,1970,24(111):647-650.
[15] 赵宁,王绪本,秦策,等.三维频率域可控源电磁反演研究[J].地球物理学报,2016,59(1):330-341. Zhao Ning,Wang Xuben,Qin Ce,et al.3D Frequency-Domain CSEM Inversion[J].Chinese Journal of Geophysics,2016,59(1):330-341.
[16] Avdeeva A D,Avdeev D B.QN Inversion of Large-Scale MT Data[C]//Progress in Electromagnetic Research Symposium.Cambridge:[s.n.],2006:210-213.
[17] Avdeev D,Avdeeva A.3D Magnetotelluric Inversion Using a Limited-Memory Quasi-Newton Optimization[J]. Geophysics,2009,74(3):F45-F57.
[18] 贾定宇.基于L-BFGS方法的水平电偶极一维反演[D].长春:吉林大学,2012. Jia Dingyu.Inversing Horizontal Electromagnetic Dipole Data by L-BFGS Method[D].Changchun:Jilin University,2012.
[19] 刘云鹤,殷长春.三维频率域航空电磁反演研究[J].地球物理学报,2013,56(12):4278-4287. Liu Yunhe,Yin Changchun.3D Inversion for Frequency-Domain HEM Data[J].Chinese Journal of Geophysics,2013,56(12):4278-4287.
[20] Commer M,Newman G A.New Advances in Three-Dimensional Controlled-Source Electromagnetic Inversion[J].Geophysics Journal International,2008,172(2):513-535.
[21] 王卫平,曾昭发,李静,等.频率域航空电磁法地形影响和校正方法[J].吉林大学学报(地球科学版),2015,45(3):941-951. Wang Weiping,Zeng Zhaofa,Li Jing,et al.Topographic Effects and Correction for Frequency Airborne Electromagnetic Method[J].Journal of Jilin University (Earth Science Edition),2015,45(3):941-951.
[22] Da U C.A Reformalism for Computing Frequency-and Time-Domain EM Responses of a Buried Finite-Loop[C]//SEG Technical Program Expanded Abstracts.[S.l.]:Society of Exploration Geophysicists,1995:811-814.
[23] 刘云鹤,刘国兴,翁爱华,等.基于二级近似离散复镜像法的低频电磁格林函数计算[J].地球物理学报,2011,54(4):1114-1121. LiuYunhe,Liu Guoxing,Weng Aihua,et al.Calculation of Low-Frequency Electromagnetic Green's Functions Using Two-Level Approximate Discrete Complex Image Method[J].Chinese Journal of Geophysics,2011,54(4):1114-1121.
[24] 翁爱华,王雪秋.利用数值积分提高一维模型电偶源电磁测深响应计算精度[J].西北地震学报,2003,25(3):193-197. Weng Aihua,Wang Xueqiu.Utilizing Direct Integration to Enhance Calculation Accuracy of 1D Electromagnetic Response for Current Dipole Source[J].Northwestern Seismological Journal,2003,25(3):193-197.
[25] Newman G A,Alumbaugh D L.Frequency-Domain Modelling of Airborne Electromagnetic Responses Using Staggered Finite Differences[J].Geophysical Prospecting,1995,43(8):1021-1042.
[26] 谭捍东,余钦范,魏文博.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,2004,46(5):705-711. Tan Handong,Yu Qinfan,Wei Wenbo.Magnetote-lluric Three-Dimensional Modeling Using the Staggered-Grid Finite Difference Method[J]. Chinese Journal of Geophysics,2004,46(5):705-711.
[27] 徐志锋,吴小平.可控源电磁三维频率域有限元模拟[J].地球物理学报,2010,53(8):1931-1939. Xu Zhifeng,Wu Xiaoping.Controlled Source Electromagnetic 3-D Modeling in Frequency Domain by Finite Element Method[J].Chinese Journal of Geophysics,2010,53(8):1931-1939.
[28] Wannamaker P E,Hohmann G W,SanFilipo W A.Electromagnetic Modeling of Three-Dimensional Bodies in Layered Earths Using Integral Equations[J].Geophysics,1984,49:60-74.
[29] 徐凯军,李桐林,张辉,等.利用积分方程法的大地电磁三维正演[J].西北地震学报,2006,28(2):104-107. Xu Kaijun,Li Tonglin,Zhang Hui,et al.Three Dimensional Magnetotelluric Forward Modeling Using Integral Equation[J].Northwestern Seismological Journal,2006,28(2):104-107.
[30] 翁爱华,李大俊,李亚彬,等.数据类型对三维地面可控源电磁勘探效果的影响[J].地球物理学报,2015, 58(2):697-708. Weng Aihua,Li Dajun,Li Yabin,et al.Selecion of Parameter Types in Controlled Source Electromagnetic Method[J].Chinese Journal of Geophysics,2015,58(2):697-708.
[31] Kelbert A,Egbert G D,Schultz A.Non-Linear Conjugate Gradient Inversion For Global EM Induction:Resolution Studies[J].Geophysical Journal of the Royal Astronomical Society,2008,173(2):365-381.
[32] Nocedal J,Wright S J.Numerical Optimization[M].New York:Springer-Verlag,1999.
[33] 袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997. Yuan Yaxiang,Sun Wenyu.Optimization Theory and Methods[M]. Beijing:Science Press,1997.
[34] 杨悦,李亚彬,翁爱华,等.频率选择对三维可控源反演的影响[J].地球物理学进展,2015,30(2):829-835. Yang Yue,Li Yabin,Weng Aihua,et al.Effect of the Choice of Frequency on Three-Dimensional Controlled Source Electromagnetic Inversion[J].Progress in Geophysics,2015,30(2):829-835.
[35] Grayver A V,Streich R,Ritter O.3D Inversion and Resolution Analysis of Land-Based CSEM Data from the Ketzin Storage Formation[J].Geophysics,2014,79(2):820-830.
[36] 王玉波,刘维英,张兴全,等.集安市矿产资源开发现状及找矿前景分析[J].矿产勘查,2010,1(增刊1):83-86. Wang Yubo,Liu Weiying,Zhang Xingquan,et al.Current Situation of Mineral Resources Exploitation and Prospect Analysis in Ji'an City[J].Mineral Exploration,2010,1(Sup.1):83-86.
[37] 陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990. Chen Leshou,Wang Guang'e.Magnetotelluric Sounding Method[M].Beijing:Geological Publishing House,1990.
[38] Kaufman A A,Keller G V.Frequency and Transient Sounding[M].New York:Elsevier Methods in Geochemistry & Geophysics,1983.
[39] Li Dajun, Weng Aihua,Yang Yue,et al.Magnitude-Phase Relationship Behind Controlled-Source Electromagnetic Field Revealed by Nyquist Diagrams[J].Journal of Environmental and Engineering Geophysics,2018,22(1):365-373.
[1] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[2] 梁生贤. 互相关系数自约束的重力三维反演与高效求解[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1473-1482.
[3] 翁爱华, 刘佳音, 贾定宇, 杨悦, 李建平, 李亚彬, 赵祥阳. 有限长导线源频率测深有限内存拟牛顿一维反演[J]. 吉林大学学报(地球科学版), 2017, 47(2): 597-605.
[4] 高秀鹤, 黄大年, 孙思源, 于平. 重力梯度数据协克里金三维反演确定岩脉倾向[J]. 吉林大学学报(地球科学版), 2017, 47(2): 589-596.
[5] 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593.
[6] 汤文武,柳建新,童孝忠. 电导率连续变化的线源FCSEM有限元正演模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1646-1654.
[7] 殷长春, 刘云鹤, 翁爱华, 贾定宇, 贲放. 海洋可控源电磁法空气波研究现状及展望[J]. J4, 2012, 42(5): 1506-1520.
[8] 张继锋, 汤井田, 喻言, 刘长生. 基于二次插值的线源可控源有限元数值模拟[J]. J4, 2009, 39(5): 929-935.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!