吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 662-672.doi: 10.13278/j.cnki.jjuese.20180067

• 地质与资源 • 上一篇    下一篇

地球化学温标估算长白山地热系统热储温度

单玄龙1, 蔡壮1, 郝国丽1, 邹欣彤2, 赵容生1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 大庆油田第二采油厂, 黑龙江 大庆 163414
  • 收稿日期:2018-03-28 出版日期:2019-06-03 发布日期:2019-06-03
  • 作者简介:单玄龙(1969-),男,教授,博士生导师,主要从事地热地质和石油天然气勘探与开发研究,E-mail:shanxl@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41472304)

Estimation of Thermal Storage Temperature of Geothermal System in Changbai Mountain by Geothermometers

Shan Xuanlong1, Cai Zhuang1, Hao Guoli1, Zou Xintong2, Zhao Rongsheng1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Daqing Oil Field Second Oil Production Plant, Daqing 163414, Heilongjiang, China
  • Received:2018-03-28 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China(41472304)

摘要: 长白山地区地热系统的研究目前还处于初级阶段,热储温度仍然是具有争议的问题。为进一步明确其高温地热成因机理,本文对该区域的4个温泉点与2口地热井进行了离子及气体组分测定与分析,并应用地球化学温标估算了热储温度。Na-K-Mg三角图和部分矿物IS值指示长白山地区地热水与围岩未达到水岩平衡状态,稀释作用明显,仅石英、玉髓和部分含Ca2+矿物达到饱和并发生沉淀。根据本文及前人的研究,研究区同时存在高温喷气孔、高ρ(Cl-)水和高ρ(SO42-)水,这符合White汽-液分离模式提出的地热地表显示组合,因此推断长白山地区下部流体发生汽-液分离作用(沸腾)且地热系统为双相地热系统。由于双相地热系统的存在制约了水化学温标与部分气化学温标在研究区热储温度估算中的应用,因此本文结合研究区气组分特征,选取CO2/H2温标作为可靠温标,估算出热储温度在234.5~284.7℃之间。将长白山天池地区地质特征与地热流体特征结合,建立了长白山地区地热成因模式。

关键词: 长白山, 热储温度, 地球化学温标, 汽-液分离, 成因模式

Abstract: The research of geothermal system in Changbai Mountain is still in its infancy. Thermal storage temperature is still a controversial issue. In order to further clarify its high-temperature geothermal mechanism, we measured the ion and gas components of 4 hot springs and 2 geothermal wells in this area. We used geothermometers to estimate thermal storage temperature. Na-K-Mg ternary plot and IS values of some minerals indicate that the water-rock equilibrium of hot water and surrounding rocks in Changbai Mountain area has not been reached,and the dilution is serious; only quartz, chalcedony and some other minerals containing Ca2+ are saturated and precipitated. According to this study and predecessors', the existence of high temperature fumarole, high ρ(Cl-) water and high ρ (SO42-) water in the study area conforms to the geothermal surface display combination proposed by White's vapor-liquid separation model. Therefore, it is considered that vapor-liquid separation (boiling) of the fluids in the bottom of Changbai Mountain occurred, and the geothermal system is a Two-Phase geothermal system,limiting the application of hydro-chemical geothermometer and some gas geothermometers in the estimation of reservoir temperature in the study area. Based on the characteristics of gas components in the study area, the CO2/H2 geothermometer was selected as a reliable geothermometer, and estimated the temperature of the reservoir of 234.5-284.7℃. Based on the geological characteristics and geothermal fluid characteristics of Tianchi area in Changbai Mountain, a geothermal genesis model of Changbai Mountain is established.

Key words: Changbai Mountain, reservoir temperature, geothermometer, vapor-liquid separation, genesis model

中图分类号: 

  • P314.2
[1] 王贵玲,张发旺,刘志明.国内外地热能开发利用现状及前景分析[J]. 地质学报,2000,21(2):134-139. Wang Guiling, Zhang Fawang, Liu Zhiming. Analysis of Present Situation and Prospect of Geothermal Energy Development and Utilization in China and Abroad[J]. Acta Geoscientia Sinica, 2000, 21(2):134-139.
[2] 闫佰忠. 长白山玄武岩区地热水资源成因机制研究[D]. 长春:吉林大学, 2016. Yan Baizhong. Study on the Formation Mechanism of Geothermal Water Resources in Changbai Mountain Basalt Area[D]. Changchun:Jilin Univerisity, 2016.
[3] 张希友, 李国政. 长白山地热田地质及地球化学特征[J]. 吉林地质, 2006, 25(1):25-30. Zhang Xiyou, Li Guozheng. The Geologic and Geochemical Characteristics of the Changbai Mountain Geothermal Field[J]. Jilin Geology, 2006, 25(1):25-30.
[4] 林元武, 高清武, 于清桐. 长白山天池火山区地下热流体化学特征研究[J]. 地质论评, 1999, 45(增刊1):241-247. Lin Yuanwu, Gao Qingwu, Yu Qingtong. A Study of Chemical Characteristics of Geothermal Fluid in Tianchi Volcanic Region, Changbai Mountains[J]. Geological Review, 1999, 45(Sup.1):241-247.
[5] Ármannsson H, Gíslason G, Hauksson T. Magmatic Gases in Well Fluids Aid the Mapping of Flow Pattern in a Geothermal System[J]. Geochimica et Cosmochimica Acta, 1982, 46(2):167-177
[6] D'Amore F, Celati R. Methodology for Calculating Steam Quality in Geothermal Reservoirs[J]. Geothermics, 1983, 12(2/3):129-140.
[7] D'Amore F, Panichi C. Evaluation of Deep Temperatures of Hydrothermal Systems by a New Gas Geothermometer[J]. Geochimica et Cosmochimica Acta, 1980, 44(3):549-556.
[8] 庞忠和, 杨峰田, 罗璐.地热田储层温度的研究方法[C]//丁仲礼. 固体地球科学研究方法.北京:科学出版社, 2013:219-242. Pang Zhonghe, Yang Fengtian, Luo Lu. Geothermal Field Reservoir Temperature Research Method[C]//Ding Zhongli. Solid Earth Science Research Methods. Beijing:Science Press, 2013:219-242.
[9] White D E, Muffler L J, Truesdell A H. Vapor-Dominated Hydrothermal Systems Compared with Hot-Water System[J]. Economic Geology,1971, 66(1):75-97.
[10] 刘昭, 蔺文静, 张萌, 等. 西藏尼木-那曲地热流体成因及幔源流体贡献[J]. 地学前缘(中国地质大学(北京);北京大学),2014,21(6):356-371. Liu Zhao, Lin Wenjing, Zhang Meng, et al. Geothermal Fluid Genesis and Mantle Fluids Contributions in Nimu-Naqu,Tibet[J]. Earth Science Frontiers (China University of Geosciences (Beijing);Peking University), 2014, 21(6):356-371.
[11] 赵平. 常用地热温度计的应用及效果评价[J]. 地球科学进展, 1993, 28(2):167-176. Zhao Ping. Commonly Used Geothermal Thermometer Application and Effect Evaluation[J]. Advance in Earth Sciences, 1993, 28(2):167-176.
[12] Arnórsson S. The Use of Mixing Models and Chemical Geothermometers for Estimating Underground Temperatures in Geothermal Systems[J]. Journal of Volcanology and Geothermal Research, 1985, 23(3/4):299-335.
[13] Leeman W P, Tonarini S, Pennisi M. Boron Isotopic Variations in Fumarolic Condensates and Thermal Waters from Vulcano Island, Italy:Implications for Evolution of Volcanic Fluids[J]. Geochimica et Cosmochimica Acta, 2005, 69(1):143-163.
[14] 赵平, 谢鄂军, 多吉, 等.西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 2002, 18(4):539-550. Zhao Ping, Xie Ejun, Duo Ji, et al. Geochemical Characteristics of Geothermal Gases and Their Geological Implications in Tibet[J]. Acta Petrologica Sinica, 2002, 18(4):539-550.
[15] 刘若新, 魏海泉, 仇士华, 等.长白山天池火山最近一次大喷发年代研究及其意义[J]. 中国科学:D辑, 1997,27(5):437-441. Liu Ruoxin, Wei Haiquan, Qiu Shihua,et al. The Last Eruptive Age of Changbaishan Tianchi Volcano and Its Significance[J]. Scinece in China:Series D, 1997, 27(5):437-441.
[16] 樊祺诚, 隋建立, 王团华, 等. 长白山火山活动历史、岩浆演化与喷发机制探讨[J]. 高校地质学报, 2007, 13(2):175-190. Fan Qicheng, Sui Jianli, Wang Tuanhua, et al. A Study on the History of Volcanic Activity, Magma Evolution and Eruption Mechanism in Changbai Mountain[J]. Geological Journal of China Universities, 2007, 13(2):175-190.
[17] 张立敏, 唐晓明. 西太平洋板块俯冲运动与中国东北深震带[J].地球物理学报, 1983, 26(4):331-340. Zhang Limin, Tang Xiaoming.The Subduction Movement of the West Pacific Ocean and China Northeast Deep Earthquakebelt[J].Geophysics, 1983, 26(4):331-340.
[18] 郭履灿, 马石庄, 张禹慎. 应用地震CT技术研究长白山火山的岩浆囊[J]. CT理论与应用岩浆, 1996, 5(1):47-52. Guo Lücan, Ma Shizhuang, Zhang Yushen. Research on "Magma Chamber" of Changbai Mountain Volcanoes by Means of Seismic Tomography[J]. CT Theory and Applications, 1996, 5(1):47-52.
[19] 仇根根,裴发根,方慧,等. 长白山天池火山岩浆系统分析[J]. 地球物理学报,2014,57(10):3466-3477. Qiu Gengen, Pei Fagen,Fang Hui, et al. Analysis of Magma Chamber at the Tianchi Volcano Area in Changbai Mountain[J]. Chinese Journal of Geophysics,2014,57(10):3466-3477.
[20] Zhao R S, Shan X L, Wu C Z, et al. Formation and Evolution of the Changbaishan Volcanic Geothermal System in a Convergent Plate Boundary Back-Arc Region Constrained by Boron Isotope and Gas Data[J]. Journal of Hydrology, 2019, 569:188-202.
[21] 闫佰忠, 邱淑伟, 肖长来, 等. 长白山玄武岩区地热异常区遥感识别[J]. 吉林大学学报(地球科学版), 2017, 47(6):1819-1828. Yan Baizhong, Qiu Shuwei, Xiao Changlai, et al. Potential Geothermal Fields Remote Sensing Identification in Changbai Mountain Basalt Area[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1819-1828.
[22] 金东淳, 崔天日, 金美兰. 长白山天池火山热(温泉)观测与研究[J]. 地震地质, 2003(增刊1):121-127. Jin Dongchun, Cui Tianri, Jin Meilan. Observation and Study of Volcanic Heat (Hot Spring) in Tianchi, Changbai Mountain[J]. Seismology and Geology, 2003(Sup.1):121-127.
[23] Giggenbach W F. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators[J]. Geochimica et Cosmochimica Acta, 1988,52(12):2749-2765.
[24] Fournier R O. Chemical Geothermometers and Mixing Models for Geothermal Systems[J]. Geothermics, 1977,5(1/2/3/4):41-50.
[25] 李婷, 刘嘉麒, 王先彬, 等. 长白山天池火山温泉的气体地球化学特征与成因[J]. 矿物岩石地球化学通报, 2015, 34(6):1192-1202. Li Ting, Liu Jiaqi, Wang Xianbin, et al. Geochemical Characteristics and Genesis of Gases from Tianchi Volcanic Springs Changbai Mountains, Jilin, China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(6):1192-1202.
[26] 孙大鹏, 高章洪, 王克俊. 青藏高原盐湖硼酸盐形成问题[J]. 沉积学报, 1984,2(4):111-126,138. Sun Dapeng, Gao Zhanghong, Wang Kejun. Problems of Borate Formation in Salt Lake in Qinghai-Tibet Plateau[J].Acta Sedimentologica Sinica, 1984, 2(4):111-126,138.
[27] Zhang M L, Guo Z F, Sano Y J, et al. Stagnant Subducted Pacific Slab-Derived CO2 Emissions:Insights into Magma Degassing at Changbaishan Volcano,NE China[J]. Journal of Asian Earth Sciences, 2015, 106:49-63.
[28] 高清武. 长白山天池火山水热活动及气体释放特征[J]. 地球学报, 2004, 25(3):345-350. Gao Qingwu. Volcanic Hydrothermal Activities and Gas-Releasing Characteristics of the Tianchi Lake Region, Changbai Mountains[J]. Acta Geoscientica Sinica, 2004, 25(3):345-350.
[29] 上官志冠, 郑雅琴, 董继川. 长白山天池火山地热区逸出气体的物质来源[J]. 中国科学:D辑, 1997, 27(4):318-324. Shangguan Zhiguan, Zheng Yaqin, Dong Jichuan. Material Sources of Gas Escape from the Tianchi Volcano Geothermal Area in Changbai Mountain[J]. Science in China:Series D, 1997, 27(4):318-324.
[30] 上官志冠, 孙令昌, 孙凤民, 等. 长白山天池火山区深部流体成分及其稳定同位素组成[J]. 地质科学, 1996, 31(1):54-64. Shangguan Zhiguan, Sun Lingchang, Sun Fengmin,et al. Fluid Composition and Stable Isotope Composition in the Deep Part of Tianchi Volcanic Area, Changbai Mountains[J]. Scientia Geologica Sinica, 1996, 31(1):54-64.
[31] Gao L, Wei H Q, Shangguan Z G, et al. Recent Geochemical Variation of the Hot Spring Gases from the Tiachi Volcano, Changbai Mountains, Northest China[J]. Earthquake Reaearch in China, 2007,21(2):179-188.
[32] 高玲, 上官志冠, 魏海泉. 长白山天池火山口内湖滨温泉地球化学[J]. 矿物岩石地球化学通报, 2010, 29(3):244-249. Gao Ling, Shangguan Zhiguan, Wei Haiquan. Geochemistry Features of the Hubin Springs in the Northern Caldera Lake of the Tianchi Volcano, Changbaishan[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2010, 29(3):244-249.
[33] 刘国明, 孙鸿雁, 郭峰. 长白山火山最新监测信息[J].岩石学报, 2011, 27(10):2905-2911. Liu Guoming, Sun Hongyan, Guo Feng. The Newest Monitoring Information of Changbaishan Volcano, NE China[J]. Acta Petrologica Sinica, 2011,27(10):2905-2911.
[34] Giggenbach W F, Goguel R L. Collection and Analysis of Geothermal and Volcanic Water and Gas Discharges[R]. London:DSIR, 1989.
[35] 赵平. 地热系统气体地球化学研究进展[J].地球科学进展, 1994, 9(1):8-13. Zhao Ping. Advances in Gas Geochemistry of Geothermal Systems[J]. Advance in Earth Sciences, 1994, 9(1):8-13.
[36] Henley R W. Book Reviews for Geothermal Fluids:Chemistry and Exploration Techniques. K. Nicholson.Spinger Verlag, Berlin, New York, 1993,263PP.,DM138.00[J].Journal of Geochemical Exploration, 1995, 52(3):382-383.
[37] Arnórsson S, Stefánsson A, Bjarnason J O. Fluid-Fluid Interactions in Geothermal Systems[J]. Reviews in Mineralogy and Geochemistry, 2005, 65(1):259-312.
[38] D'Amore F, Fanccelli R, Caboi R. Observation on the Application of Chemical Geothermometers to Some Hydrothermal Systems in Sarinia[J]. Geothermics, 1987, 16(3):271-282.
[39] Fournier R O,Rowe J J. Chemical Geothermomeyers and Mixing Models for Geothermal Systems[J]. Geothermics, 1977, 5(1/2/3/4):41-50.
[40] Arnorsson S. Chemical Equilibria in Icelandic Geothermal Systems-Implications for Chemical Geothermometry Investigation[J]. Geothermics, 1983, 12(2/3):119-128.
[41] Fournier R O, Truesdell A H. An Empirical Na-K-Ca Geothermometer for Natural Waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5):1255-1275.
[42] Sanjuan B, Romain M,Asmundsson R,et al. Use of Two New Na/Li Geothermometric Relationships for Geothermal Fluids in Volcanic Environments[J]. Chemcial Geology,2014,389:60-81.
[43] Leslie A, Andrew H, Robert K. An Experimental Investigation of the Quartz, Na-K, Na-K-Ca Geothermometers and the Effects of Fluid Composition[J]. Journal of Volcanology and Geothermal Research,1987,31(1/2):151-161.
[44] Gunter W D, Wiwchar B, Holloway L. Geothermometers for Predicting Temperatures During Steamassisted Oil Recobery in the Oil Sands Reservoirs of the Mannville Group, Alberta:Petroleum Geology of the Cretaceous Mannville Group[J]. Western Canada, 2012, 36(3):413-427.
[45] Rose M, Victor M. Thermal Evolution (1984-2005) of the Los Humeros(Mexico) Geothermal Fluids as Indicated by Chemical Geothermometers[J]. Science and Technology, 2010, 5(2):293-302.
[46] 赵平. 地热系统气-水-岩石体系化学热力学平衡及其模拟计算[J].岩石学报, 1992, 8(4):311-323. Zhao Ping. Chemical Thermodynamic Equilibrium of Gas-Water-Rock System in Geothermal System and Its Simulation Calculation[J].Acta Petrologica Sinica, 1992, 8(4):311-323.
[47] Giggenbach W F. Redox Processes Governing the Chemistry of Fumarolic Gas Discharges from White Island, New Zealand[J]. Applied Geochemistry, 1987, 2(2):143-161.
[48] Janik C J, Mclaren M K. Seismicity and Fluid Geochemistry at Lassen Volcanic National Park, California:Evidence of Two Circulation Cells in the Hydrothermal System[J]. Journal of Volcanology and Geothermal Research, 2010, 189(3/4):257-277.
[49] 张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘(中国地质大学(北京);北京大学),2017, 24(3):190-198. Zhang Ying, Feng Jianyun, He Zhiliang, et al. Classification of Geothermal Systems and Their Formation Key Factors[J]. Earth Science Frontiers, (China University of Geosciences (Beijing);Peking University),2017, 24(3):190-198.
[1] 闫佰忠, 邱淑伟, 肖长来, 梁秀娟. 长白山玄武岩区地热异常区遥感识别[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1819-1828.
[2] 陈鹏, 单玄龙, 郝国丽, 赵容生, 周健. 长白山仙人桥温泉断裂岩溶复合型地热成因模式[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1236-1246.
[3] 冯晅, 迟唤昭, 刘财, 田有,柳云龙,郑确. 长白山及邻区地壳、上地幔顶部三维速度结构[J]. 吉林大学学报(地球科学版), 2013, 43(3): 983-996.
[4] 王璞珺,衣健,陈崇阳,王岩泉. 火山地层学与火山架构:以长白山火山为例[J]. 吉林大学学报(地球科学版), 2013, 43(2): 319-339.
[5] 杨峰田, 庞忠和, 王彩会, 段忠丰, 罗璐, 李义曼. 苏北盆地老子山地热田成因模式[J]. J4, 2012, 42(2): 468-475.
[6] 张大权, 丰成友, 李大新, 陈毓川, 曾载淋. 江西省崇义县淘锡坑钨锡矿床流体包裹体特征及矿床成因[J]. J4, 2012, 42(2): 374-383.
[7] 万园, 许建东, 林旭东, 潘波. 基于数值模拟的长白山天池火山泥石流灾害展布范围分析及预测[J]. J4, 2011, 41(5): 1638-1645.
[8] 王明常, 牛雪峰, 杨毅恒, 邢立新. 长白山地区景观格局过程模拟预测研究[J]. J4, 2009, 39(5): 947-952.
[9] 刘祥. 长白山火山历史上最大火山爆发火山碎屑物层序与分布[J]. J4, 2006, 36(03): 313-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!