吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1182-1191.doi: 10.13278/j.cnki.jjuese.20180126

• 地球探测与信息技术 • 上一篇    下一篇

基于SBAS-InSAR技术的豫北平原地面沉降监测

许军强1, 马涛2, 卢意恺3, 白潍铭1, 赵帅1   

  1. 1. 河南省航空物探遥感中心, 郑州 450053;
    2. 河南豫矿资源开发集团有限公司, 郑州 450012;
    3. 河南省地矿局第五地质勘查院, 郑州 450001
  • 收稿日期:2018-05-23 出版日期:2019-07-26 发布日期:2019-07-26
  • 作者简介:许军强(1981-),男,高级工程师,主要从事遥感技术在地质和生态环境领域的应用研究,E-mail:xvjunqiang@126.com
  • 基金资助:
    国家自然科学基金项目(41774070)

Land Subsidence Monitoring in North Henan Plain Based on SBAS-InSAR Technology

Xu Junqiang1, Ma Tao2, Lu Yikai3, Bai Weiming1, Zhao Shuai1   

  1. 1. Henan Aero Geophysical Survey and Remote Sensing Center, Zhengzhou 450053, China;
    2. Henan Yukuang Resources Development Group Co., Ltd., Zhengzhou 450012, China;
    3. No.5 Institute of Geo-Exploration of Henan, Zhengzhou 450001, China
  • Received:2018-05-23 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41774070)

摘要: 豫北平原是河南省平原地区地面沉降灾害较严重地区之一,快速全面掌握豫北平原地面沉降信息、有效防控地面沉降的持续快速发展对中原城市群建设至关重要。本文借助中高分辨率RADARSAT-2雷达数据,基于SBAS-InSAR技术获取了豫北平原2014-2016年的地面沉降监测数据。监测结果表明:两年内豫北平原地面整体下沉,区内共圈定8个较明显的沉降区,总面积约3 006 km2,各沉降区沉降速率在25.00~114.85 mm/a之间;其中,除安阳县白壁镇-内黄县沉降区和辉县沉降区最大沉降速率分别达到95.36和114.85 mm/a之外,其余6个沉降区最大沉降速率均小于73.58 mm/a。根据沉降区现场实地调查和综合分析发现,豫北平原地面沉降主要是活动断裂、松软岩土、地下水超采、城市建设活动、石油和地热资源开采等共同作用的结果。建议将豫北平原地面沉降的防控重点放在人类活动引起的地下水超采和城市建设引发的松软岩土层超量堆载等方面。

关键词: 豫北平原, 地面沉降, SBAS-InSAR技术

Abstract: Land subsidence occurs often in the plain of the northern Henan Province.It is very important to rapidly and effectively grasp the information of land subsidence and settlement to the construction of central plains urban agglomeration.Using high and medium resolution data of RADARSAT-2 radar and SBAS-InSAR technology,the land subsidence monitoring records of north Henan Plain from 2014 to 2016 were obtained.The records show that in the two years the whole land subsided in Henan Province,of which eight areas were more seriou swith about 3 006 km2 subsidence, and the settlement rate of each area was approximately 25.00-114.85 mm/a. Among them, except the maximum settlement rate of Baibi Town-Neihuang County and Hui County was 95.36 and 114.85 mm/a respectively, the maximum settlement rate of the other six subsidence areas was less than 73.58 mm/a.According to the field investigation and comprehensive analysis of the settlement areas, the land subsidence in north Henan Plain is mainly caused by active faults, soft rock, groundwater overdraft, urban construction activities, and oil and geothermal mining.The authors suggests that the prevention and control of ground subsidence in north Henan Plain should be focused on the excess exploitation of groundwater and overloading of soft rock soil layer caused by city construction.

Key words: north Henan Plain, land subsidence, SBAS-InSAR technology

中图分类号: 

  • P237
[1] 赵云章,李小杰,张良,等.河南省平原地区地面沉降基本特征及防治建议[J].中国地质灾害与防治学报,2005, 16(1):123-125. Zhao Yunzhang, Li Xiaojie, Zhang Liang, et al. Basic Characteristics of Land Subsidence in Plain Areas of Henan and Suggestions for Prevention and Control[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(1):123-125.
[2] 郑铣鑫,武强,侯艳声,等.关于城市地面沉降研究的几个前沿问题[J].地球学报,2002,23(3):279-282. Zheng Xianxin, Wu Qiang, Hou Yansheng, et al. Some Frontier Problems on Land Subsidence Research[J]. Acta Geoscientia Sinica, 2002,23(3):279-282.
[3] 殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报, 2005, 16(2):1-8. Yin Yueping, Zhang Zuochen, Zhang Kaijun. Land Subsidence and Countermeasures for Its Prevention in China[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(2):1-8.
[4] 王艳,廖明生,李德仁,等.利用长时间序列相干目标获取地面沉降场[J].地球物理学报, 2007,50(2):598-604. Wang Yan, Liao Mingsheng, Li Deren, et al.Circulation Characteristics of Interannual and Interdecadal Anomalies of Summer Rainfall in North Xinjiang[J]. Chinese Journal of Geophysics, 2007,50(2):598-604.
[5] 寇程,柯长青.基于D-InSAR技术的伊朗巴姆地震地表形变监测[J].震灾防御技术, 2013, 8(1):72-80. Kou Cheng,Ke Changqing. Detecting Surface Deformation Produced by Bam Earthquake of Iran Based on D-InSAR[J]. Technology for Earthquake Disaster Prevention, 2013, 8(1):72-80.
[6] 张倍倍.合成孔径雷达干涉测量(InSAR)技术在地表沉降监测中的应用[J].西部资源, 2014(5):149-150. Zhang Beibei. Interferometric Synthetic Aperture Radar (InSAR) Application of the Ground Settlement Observation[J]. Western Resources, 2014(5):149-150.
[7] 刘曦霞.合成孔径雷达干涉测量(INSAR)技术原理及应用发展[J].科技创新与应用, 2015(20):36-37. Liu Xixia. Principle and Application Development of Interferometric Synthetic Aperture Radar Technology[J]. Technology Innovation and Application, 2015(20):36-37.
[8] 舒宁.雷达影像干涉测量原理[M]. 武汉:武汉大学出版社, 2003. Shu Ning. Principle of Interferometry Measurement of Radar Images[M]. Wuhan:Wuhan University Press, 2003.
[9] 孙晓鹏,鲁小丫,文学虎,等.基于SBAS-InSAR的成都平原地面沉降监测[J].国土资源遥感, 2016,28(3):123-129. Sun Xiaopeng, Lu Xiaoya, Wen Xuehu, et al. Monitoring of Ground Subsidence in Chengdu Plain Using SBAS-InSAR[J]. Remote Sensing for Land and Resources, 2016, 28(3):123-129.
[10] 胡乐银,张景发,商晓青.SBAS-InSAR技术原理及其在地壳形变监测中的应用[C]//谢富仁.地壳构造与地壳应力文集. 北京:中国地震局地壳应力研究所, 2010:82-89. Hu Yueyin, Zhang Jingfa, Shang Xiaoqing. SBAS-InSAR Technology and Its Application in Monitoring the Crustal Deformation[C]//Xie Furen. Crustal Structure and Stress Proceedings. Beijing:The Institute of Crustal Dynamics, 2010:82-89.
[11] Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2382.
[12] 王超,张红,刘智. 合成孔径雷达干涉测量[M]. 北京:科学出版社,2002. Wang Chao, Zhang Hong, Liu Zhi. Synthetic Aperture Radar Interferometry[M]. Beijing:Science Press, 2002.
[13] Lanari R, Casu F, Manzo M, et al. Application of the SBAS-DInSAR Technique to Fault Creep:A Case Study of the Hayward Fault, California[J]. Remote Sensing of Environment, 2006, 109(1):20-28.
[14] Casu F, Manzo M, Lanari R. A Quantitative Assessment of the SBAS Algorithm Performance for Surface Deformation Retrieval from D-InSAR Data[J].Remote Sensing of Environment, 2006, 102(3/4):195-210.
[15] 李珊珊,李志伟,胡俊,等.SBAS-InSAR技术监测青藏高原季节性冻土形变[J].地球物理学报,2013,56(5):1476-1486. Li Shanshan, Li Zhiwei, Hu Jun, et al. Investigation of the Seasonal Oscillation of the Permafrost over Qinghai-Tibet Plateau with SBAS-InSAR Algorithm[J].Chinese Journal of Geophysics, 2013, 56(5):1476-1486.
[16] 曹淑敏,肖恭伟,辛锴. 基于PS-InSAR和SBAS-InSAR技术的北京地区地面沉降对比分析[J]. 测绘与空间地理信息,2016, 39(10):40-42. Cao Shumin, Xiao Gongwei, Xin Kai. Deformation Monitoring Research of Land in Beijing Based on the PS-InSAR and SBAS-InSAR[J]. Geomatics and Spatial Information Technology, 2016,39(10):40-42.
[17] 陈志谋,陈金座,罗楚楚,等.利用小基线集技术(SBAS)监测泉州地区地表形变[J].测绘工程,2017,26(7):36-40. Chen Zhimou, Chen Jinzuo, Luo Chuchu, et al. Monitoring the Ground Deformation in Quanzhou Area with Small Baseline Subset[J]. Engineering of Surveying and Mapping, 2017, 26(7):36-40.
[18] 唐桂彬,李俊锋,杨爱玲.小基线集技术在地面沉降监测中的应用[J].测绘与空间地理信息,2014,37(12):165-168. Tang Guibin, Li Junfeng, Yang Ailing. The Use of SBAS-InSAR Technology in Ground Subsidence Monitoring[J]. Geomatics & Spatial Information Technology, 2014, 37(12):165-168.
[19] Mora O, Mallorqui J J, Broquetas A. Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images[J].IEEE Transactions on Geosciences and Remote Sensing, 2003, 41(10):2243-2253.
[20] Hassen R. Radar Interferometry, Data Interpretation and Error Analysis[M/OL]. Kluwer Academic Publishers, 2001. doi:10.1007/0-306-47633-9.
[21] 地面沉降干涉雷达数据处理技术规程:DD2014-11[S].北京:中国地质调查局,2014. Technical Specification for Data Processing of Ground Subsidence Interferometry Radar:DD2014-11[S].Beijing:China Geological Survey, 2014.
[22] 刘建方.河南省平原区活动断裂特征及其工程防范初探[J]. 河南地质,1996,14(4):305-308. Liu Jianfang.Characteristics of Active Faults and Engineering Prevention in Henan Plain Area[J]. Henan Gology, 1996, 14(4):305-308.
[1] 骆祖江, 宁迪, 杜菁菁, 陆玮. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2): 514-525.
[2] 王洁, 宫辉力, 陈蓓蓓, 高明亮, 周超凡, 梁悦, 陈文锋. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3): 836-845.
[3] 周超凡, 宫辉力, 陈蓓蓓, 贾煦, 朱锋, 郭琳. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1511-1520.
[4] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[5] 李贶家, 顾延生, 刘红叶. 豫北平原全新世孢粉记录气候变化与古文化演替[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1449-1457.
[6] 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594.
[7] 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965.
[8] 李文运, 崔亚莉, 苏晨, 张伟, 邵景力. 天津市地下水流-地面沉降耦合模型[J]. J4, 2012, 42(3): 805-813.
[9] 付延玲. 基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J]. J4, 2012, 42(2): 476-484.
[10] 骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究[J]. J4, 2009, 39(6): 1080-1088.
[11] 于 军,苏小四,朱 琳,段福洲,高 立,吴曙亮. 苏锡常地区地面沉降地质结构三维可视化模型虚拟现实系统研究[J]. J4, 2007, 37(2): 393-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[2] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[3] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[4] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[5] 景建恩,魏文博,梅忠武. 塔河油田奥陶系岩溶洞穴发育特征及其与油气的关系[J]. J4, 2005, 35(05): 622 -625 .
[6] 迟宝明,易树平,李治军,周彦章. 大连地区水资源人工调控研究[J]. J4, 2005, 35(05): 632 -635 .
[7] 薛林福,潘保芝,米石云,石广仁. 沉积过程的三维计算机模拟及其应用[J]. J4, 2005, 35(04): 475 -0480 .
[8] 李绪谦,商书波,林亚菊,周洪义,侯 戈. 石油类污染物在包气带土层中的水化学迁移率测定[J]. J4, 2005, 35(04): 501 -0504 .
[9] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[10] 吴新伟,刘正宏,徐仲元. 大青山逆冲推覆构造带中劈理特征及其成因[J]. J4, 2005, 35(05): 564 -569 .