吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1732-1740.doi: 10.13278/j.cnki.jjuese.20180239

• 地质工程与环境工程 • 上一篇    下一篇

胶态微泡沫在非饱和多孔介质中的迁移规律及影响因素

秦传玉, 郭超, 何宇   

  1. 吉林大学新能源与环境学院, 长春 130021
  • 收稿日期:2018-09-13 发布日期:2019-11-30
  • 作者简介:秦传玉(1981-),男,副教授,主要从事土壤、地下水污染控制与治理研究,E-mail:qincyu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41572213,41530636);吉林省科技厅科技创新人才培育计划项目(20160520079JH)

Migration Characteristics of CGAs and the Influencing Factors in Unsaturated Porous Media

Qin Chuanyu, Guo Chao, He Yu   

  1. College of New Energy and Environment, Jilin University, Changchun 130021, China
  • Received:2018-09-13 Published:2019-11-30
  • Supported by:
    Supported by National Natural Science Foundation of China (41572213,41530636) and Youth Science and Technology Innovation Personnel Training Plan of Jilin Provincial Science and Technology Department(20160520079JH)

摘要: 传统原位土壤淋洗修复存在淋洗效率低、淋洗液迁移难控制、污染范围易扩大的弊端。胶态微泡沫(CGAs)密度轻、粒径小、流动性好,可以有效解决传统液相淋洗修复中的问题。在修复过程中,压力作为一项重要的指标,可以有效地反映CGAs在介质中的迁移分布;因而本研究通过一维和二维动态模拟实验探讨了介质粒径、介质含水量、聚合物(黄原胶)添加等对土壤修复体系压力的影响以及CGAs在土壤中的运移规律。研究表明:随着介质粒径、介质含水量、黄原胶质量浓度的增大,体系中压力总体呈现降低趋势;CGAs从模拟槽一侧单点注入介质时,其在介质中的迁移轨迹呈现近似半圆形,在覆盖区域分布均匀,能够有效克服重力对其迁移分布的影响;随着介质粒径的增大,CGAs在介质中的波及效率先增大后减小,介质粒径为0.8~1.0 mm时波及效率最大,为34.77%;随着含水量的增加,CGAs的波及效率随之增加;黄原胶的添加有效增加了CGAs在介质中的波及效率,黄原胶质量浓度为500 mg/L时CGAs波及效率最大,为40.28%,是未添加黄原胶时的1.48倍。

关键词: 胶态微泡沫, 波及效率, 黄原胶, 压力

Abstract: Traditional surfactant flushing technology has some disadvantages such as low elution efficiency, difficult control of liquid transport, and contaminated area extension. Colloidal gas aphrons (CGAs) can effectively avoid these problems with the characteristics of light density, small particle size, and good fluidity. Pressure can be used as a crucial parameter in the remediation process to efficiently reflect the CGAs migration distribution. One-dimensional and two-dimensional models were designed in this research to discuss the effects of medium grain size, moisture content, and polymer (xanthan gum) addition on the pressure of the system and the transport patterns of CGAs in soil. The results demonstrated that with the increase of the medium grain size, moisture content, and xanthan gum concentration, the pressure of the system decreased. Besides, the results of the CGAs injection into soil from a single point on one side of the simulated tank indicated that the migration traces in the medium was nearly semicircular and CGAs distributed uniformly in the coverage area, which effectively overcame the influence of gravity to its distribution in the medium. With the increase of medium grain size, the CGAs sweep efficiency increased first and then decreased. The maximum value of sweep efficiency reached 34.77% when the medium grain size was 0.8-1.0 mm. The moisture content augmentation of the medium also stimulated the increase of the sweep efficiency. Moreover, the addition of xanthan gum significantly improved the sweep efficiency of CGAs:when the mass concentration of xanthan gum was 500 mg/L, the sweep efficiency reached 40.28%,which is 1.48 times greater than that without xanthan gum addition.

Key words: colloidal gas aphrons, sweep efficiency, xanthan gum, pressure

中图分类号: 

  • X53
[1] 赵勇胜.地下水污染场地污染的控制与修复[J].吉林大学学报(地球科学版),2007,37(2):303-310. Zhao Yongsheng. Groundwater Pollution Control and Remediation[J]. Journal of Jilin University(Earth Science Edition), 2007,37(2):303-310.
[2] 苏燕, 赵勇胜, 李璐璐,等. 多孔介质中泡沫的迁移特性和影响因素研究[J]. 中国环境科学, 2015,35(3):817-824. Su Yan,Zhao Yongsheng,Li Lulu,et al. Study on Transport Characteristics of Foams and Affecting Factors in Porous Media[J]. China Environmental Science, 2015,35(3):817-824.
[3] Khan F I, Husain T, Hejazi R. An Overview and Analysis of Site Remediation Technologies[J]. Journal of Environmental Management, 2004, 71(2):95-122.
[4] Paria S. Surfactant-Enhanced Remediation of Organic Contaminated Soils and Water[J]. Advanced Colloidal Interface Science, 2008,138:24-58.
[5] 赵勇胜,郑苇,秦传玉,等.强化空气扰动技术中表面活性剂的选择[J].吉林大学学报(地球科学版),2010,40(5):1157-1162. Zhao Yongsheng, Zheng Wei,Qin Chuanyu,et al. Selection of Surfactant in Surfactant-Enhance Air Sparging[J]. Journal of Jilin University(Earth Science Edition), 2010,40(5):1157-1162.
[6] Wang H, Chen J J. A Study on the Permeability and Flow Behavior of Surfactant Foam in Unconsolidated Media[J]. Environmental Earth Science, 2013,68:567-576.
[7] Dermont G, Bergeron M, Mercier G, et al. Soil Washing for Metal Removal:A Review of Physical/Chemical Technologies and Field Applications[J]. Journal of Hazardous Materials, 2008,152:1-31.
[8] Mulligan C N, Eftekhari F. Remediation with Surfactant Foam of PCP-Contaminated Soil[J]. Engineering Geology, 2003, 70(3):269-279.
[9] Wang S, Mulligan C N. Rhamnolipid Foam Enhanced Remediation of Cadmium and Nickel Contaminated Soil[J]. Water Air & Soil Pollution, 2004, 157(1/2/3/4):315-330.
[10] Mulligan C N, Wang S L. Remediation of a Heavy Metalcontaminated Soil by a Rhamnolipid Foam[J]. Engineering Geology, 2006,85:75-81.
[11] Zhang Z F, Mark L Z, White D, et al. Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media[J].Vadose Zone Journal, 2012,11:421-427
[12] Sebba F. Foams and Biliquid Foams-Aphrons[M].[S.l.]:Wiley, 1987.
[13] Hashim M A, Mukhopadhyay S, Gupta B S, et al. Application of Colloidal Gas Aphrons for Pollution Remediation[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(3):305-324.
[14] 史胜龙, 王业飞, 温庆志,等.微泡沫与普通泡沫注入性及调剖能力对比[J]. 石油与天然气化工, 2018,47(3):62-66. Shi Shenglong,Wang Yefei,Wen Qingzhi,et al. Comparison of Injectivity and Profile Control Capacity of Microfoam and Common Foam[J]. Chemical Engineering of Oil & Gas, 2018,47(3):62-66.
[15] Roy D, Valsaraj K T, Constant W D, et al. Removal of Hazardous Oily Waste from a Soil Matrix Using Surfactants and Colloidal Gas Aphron Suspensions Under Different Flow Conditions. J Hazard Mater,1994, 38:127-144.
[16] Roy D, Valsaraj K T,Kottai S A, et al. Separation of Organic Dyes from Wastewater by Using Colloidal Gas Aphrons[J]. Sep Sci Technol,1992,27:573-588.
[17] Couto H J B, Massarani G, Biscaia E C, et al. Remediation of Sandy Soils Using Surfactant Solutions and Foams[J]. J Hazard Mater,2009,164:1325-1334.
[18] Boonamnuayvitaya V, Jutaporn P, Sae-ung S, et al. Removal of Pyrene by Colloidal Gas Aphrons of a Biodegradable Surfactant[J]. Separation and Purification Technology, 2009,68:411-416.
[19] 苏燕. 包气带NAPLs污染的表面活性剂泡沫强化修复实验研究[D].长春:吉林大学,2015. Su Yan. Study on Enhanced Remediation of NAPLs Contaminated Vadose Zone with Surfactant Foams[D]. Changchun:Jilin University,2015.
[20] Zhong L R,Szecsody J E,Zhang F,et al. Foam Delivery of Amendments for Vadose Zone Remediztion:Propagation Performation in Unsaturated Sediments[J]. Vadose Zone,2010,9:757-767.
[21] Bjorndalen N,Kuru E. Physico-Chemical Characterization of Aphron-Based Drilling Fluids[J]. Journal of Canadian Petroleum Technology, 2008, 47(11):15-21.
[22] Bjorndalen N, Kuru E. Stability of Microbubble-Based Drilling Fluids Under Downhole Conditions[J]. Journal of Canadian Petroleum Technology, 2008, 47(6):40-47.
[23] 史胜龙, 王业飞, 阳建平,等. 胶质气体泡沫的起泡性能及封堵能力研究[J]. 油田化学, 2016, 33(3):451-455. Shi Shenglong,Wang Yefei,Yang Jianping,et al. Foaming Property and Blocking Ability of Colloidal Gas Aphron,Oilfield Chemistry[J]. Oilfield Chemistry, 2016, 33(3):451-455.
[24] 胡渤.不同渗透率和孔喉条件下泡沫流体的特性及调驱机理[J].油气地质与采收率,2016,23(4):70-75. Hu Bo. Property of Foam Fluid and Its Mechanism of Profile Control and Displacement in the Reservoirs with Different Permeabilities and Pore-Throats[J]. Petroleum Geology and Recovery Efficiency,2016,23(4):70-75.
[1] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[2] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[3] 罗凌云, 洪梅, 吕帆, 刘伟伟, 徐岽峰. 饱和度-压力曲线法预测柴油在毛细带中形成的透镜体厚度[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1838-1844.
[4] 洪勇, 周蓉, 郑孝玉. 不同排水条件下饱和砂土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1416-1426.
[5] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[6] 胡欣蕾, 吕延防, 孙永河, 孙同文. 泥岩盖层内断层垂向封闭能力综合定量评价:以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718.
[7] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[8] 庞振宇, 赵习森, 孙卫, 党海龙, 任大忠, 解伟. 致密气藏成藏动力及成藏模式——以鄂尔多斯盆地L区块山1储层为例[J]. 吉林大学学报(地球科学版), 2017, 47(3): 674-684.
[9] 潘建立. 顶管施工引起土体变形的计算方法及应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1458-1465.
[10] 韦丹宁, 付广. 反向断裂下盘较顺向断裂上盘更易富集油气机理的定量解释[J]. 吉林大学学报(地球科学版), 2016, 46(3): 702-710.
[11] 张志辉, 张达, 狄永军, 李兴俭, 阙朝阳, 马先平, 杜泽忠. 安徽铜陵焦冲金矿床成矿流体特征及成矿机制[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1657-1666.
[12] 毛毳, 陈勇, 周瑶琪, 葛云锦, 王有智, 周振柱. 改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1352-1364.
[13] 兰凯, 刘明国, 晁文学. 横观各向同性水敏性地层斜井眼坍塌压力确定[J]. 吉林大学学报(地球科学版), 2015, 45(1): 198-206.
[14] 陈文玲,王振刚,魏美蓉. 锚杆排桩基坑支护效果及其对周围环境的影响[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1269-1275.
[15] 赵权利,尚岳全,支墨墨. 平推式滑坡启动判据的修正[J]. 吉林大学学报(地球科学版), 2014, 44(2): 596-602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李艳芳,蔡厚安,梁汉东,张 俊,梅亚青,张宏刚. 西峡晚白垩世恐龙蛋化石宏观矿物组成研究及意义[J]. J4, 2006, 36(02): 158 -0163 .
[2] 柳雁玲,佴 磊,刘永平. 和龙沿江公路傍山隧道偏压特征分析[J]. J4, 2006, 36(02): 240 -0244 .
[3] 崔 健,林年丰,汤 洁,姜玲玲,蔡 宇. 霍林河流域下游地区土地利用变化动态及趋势预测[J]. J4, 2006, 36(02): 259 -0264 .
[4] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[5] 祝洪臣,王海坡,张炯飞. 内蒙古苏尼特左旗两种不同成因类型金矿[J]. J4, 2006, 36(05): 759 -766 .
[6] 陈力,梁海安,张文娟,荣帆. 模糊数学方法在城市工程地质环境区划中的应用--以抚顺市城区为例[J]. J4, 2008, 38(5): 837 -0840 .
[7] 孟庆涛,刘招君,柳蓉,王永莉. 松辽盆地农安地区上白垩统油页岩含油率影响因素[J]. J4, 2006, 36(6): 963 -0968 .
[8] 鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. J4, 2007, 37(1): 15 -0023 .
[9] 王福刚,廖资生. 应用 D、18O同位素峰值位移法求解大气降水入渗补给量[J]. J4, 2007, 37(2): 284 -287 .
[10] 胡建武,陈建平,朱鹏飞. 基于证据权重法的中下扬子北缘下古生界油气地质异常[J]. J4, 2007, 37(3): 458 -0462 .