吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 800-814.doi: 10.13278/j.cnki.jjuese.20180236
• 地质与资源 • 上一篇
任云生1, 刘小禾1, 商青青1, 陈聪2, 杨群1, 郝宇杰1, 孙振明1
Ren Yunsheng1, Liu Xiaohe1, Shang Qingqing1, Chen Cong2, Yang Qun1, Hao Yujie1, Sun Zhenming1
摘要: 鸡南铁矿床位于吉林省和龙地区,地处华北克拉通北缘与兴蒙造山带接壤的龙岗地块北部,是东北地区发现较早的BIF型铁矿床之一。该矿床铁矿体主要呈层状、似层状、扁豆状赋存于鞍山群鸡南组上段中部层位,含矿岩石以黑云斜长片麻岩、角闪黑云斜长片麻岩、黑云角闪斜长片麻岩及斜长角闪岩为主,为角闪岩相的中低级区域变质岩系;主要矿石类型为条带状磁铁石英岩型和块状磁铁角闪岩型。为确定该矿床含矿建造的原岩、变质时代及构造背景,重点对含矿岩系中的斜长角闪岩进行了岩石地球化学和锆石U-Pb年代学研究。结果表明:斜长角闪岩的地球化学特征表现为富集大离子亲石元素、轻微富集重稀土元素;主量元素质量分数与中性-基性岩类基本相似,结合原岩恢复图解,判断其原岩类型为亚碱性玄武岩(拉斑玄武岩),形成于弧后盆地背景;LA-ICP-MS锆石U-Pb年代学研究中,2个较老的锆石测点年龄分别为(2 468±15)和(2 469±9)Ma,代表区内峰期变质年龄(约2 460 Ma),26个锆石测点的测年数据较为集中,加权平均年龄为(2 275±25)Ma,代表区内退变质年龄。通过与国内外典型BIF型铁矿床的对比研究认为,区内的鸡南铁矿与官地铁矿同属Algoma型铁矿床。
中图分类号:
[1] 孟洁,李厚民,李立兴,等. 华北克拉通南缘太华群铁山庙铁矿床沉积时代的约束:锆石U-Pb定年及Hf同位素证据[J]. 地质学报,2018,92(1):125-141. Meng Jie, Li Houmin, Li Lixing, et al. Depositional Time of the Tieshanmiao Iron Ore Deposit in the Taihua Complex, Southern Margin of the North China Craton:Constraint from Zircon U-Pb Dating and Hf Isotope Evidence[J]. Acta Geologica Sinica, 2018, 92(1):125-141. [2] 沈保丰. 中国BIF型铁矿床地质特征和资源远景[J]. 地质学报,2012,86(9):1376-1395. Shen Baofeng. Geological Characters and Resource Prospect of the BIF Type Iron Ore Deposits in China[J]. Acta Geologica Sinica, 2012, 86(9):1376-1395. [3] 刘利,张连昌,代堰锫.BIF成因研究进展[J]. 地质科学,2014,49(3):1018-1033. Liu Li, Zhang Lianchang, Dai Yanpei. Research Progress of BIF Genesis[J]. Chinese Journal of Geology, 2014, 49(3):1018-1033. [4] 翟明国. 华北克拉通的形成以及早期板块构造[J]. 地质学报,2012,86(9):1335-1349. Zhai Mingguo. Evolution of the North China Craton and Early Plate Tectonics[J]. Acta Geologica Sinica, 2012, 86(9):1335-1349. [5] 刘大为,王铭晗,刘素巧,等. 辽宁弓长岭铁矿二矿区条带状铁建造地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版),2017,47(3):694-705. Liu Dawei, Wang Minghan, Liu Suqiao, et al. Geochemical Characteristics and Genesis of Band Iron Formation in No.2 Mining Area of Gongchangling Iron Deposit, Liaoning Province[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3):694-705. [6] 郑梦天,张连昌,王长乐,等. 冀东杏山BIF铁矿形成时代及成因探讨[J]. 岩石学报,2015,31(6):1636-1652. Zheng Mengtian, Zhang Lianchang, Wang Changle, et al. Formation Age and Origin of the Xingshan BIF Type Iron Deposit in Eastern Heibei Province[J]. Acta Petrologica Sinica,2015,31(6):1636-1652. [7] 夏建明. 辽宁弓长岭BIF型铁矿田成矿环境与富铁矿床形成机制的研究[D]. 沈阳:东北大学,2013. Xia Jianming. The Study on Metallogenic Environment and High-Grade Iron Deposits Formation Mechanism of Gongchangling, Liaoning Provice[D]. Shenyang:Northeastern University, 2013. [8] 张密刚,王雅平. 和龙市鸡南铁矿床地质特征及找矿标志[J]. 矿业论坛,2009,29:347-390. Zhang Migang, Wang Yaping. Geological Characteristics and Prospecting Sign of Jinan Iron Deposit in Helong City[J]. Mining Forum, 2009, 29:347-390. [9] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30. [10] Qi L, Hu J, Gregoire D C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry[J]. Talanta, 2000, 51(3):507-513. [11] 商青青,任云生,陈聪,等. 延边官地铁矿构造背景与和龙地块太古宙地壳增生:来自岩石地球化学、锆石U-Pb年代学及Hf同位素证据[J]. 地球科学,2017,42(12):2208-2228. Shang Qingqing, Ren Yunsheng, Chen Cong, et al. Tectonic Setting of Guandi Iron Deposit and Archean Crustal Growth of Helong Massif in NE China:Evidence from Petrogeochemisty, Zircon U-Pb Geochronology and Hf Isotope[J]. Journal of Earth Science, 2017, 42(12):2208-2228. [12] 刘军, 靳淑韵. 辽宁弓长岭铁矿床斜长角闪岩类地球化学特征研究及原岩恢复[J]. 中国地质, 2010, 37(2):324-333. Liu Jun, Jin Shuyun. Study on the Geochemical Characteristics of Plagioclasite Amphibolite and the Restoration of Original Rock in Gongchangling Iron Deposit, Liaoning[J]. Geology in China, 2010, 37(2):324-333. [13] Shaw D W. The Origin of the Apsley Gneiss, Ontario[J]. Canadian Journal of Earth Sciences, 1972, 9(1):18-35. [14] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. [15] Shaw D M, Kudo A M. A Test of the Discriminant Function in the Amphibolite Problem[J]. Mineralogical Magazine, 1965, 34:423-435. [16] Wiedenbeck M, Alle P, Corfu F, et al. Three Nat,Ural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and REE Analyses[J]. Geostandards Newsletter, 1995, 19(1):1-23. [17] Hu Z C, Gao S, Liu Y S, et al. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8):1093-1101. [18] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43. [19] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. [20] 侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质,2009,28(4):481-492. Hou Kejun, Li Yanhe, Tian Yourong. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4):481-492. [21] Andersen T, Griffin W L, Pearson N J. Crustal Evolution in the SW Part of the Baltic Shield:The Hf Isotope Evidence[J]. Journal of Petrology, 2002, 43(9):1725-1747. [22] Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological, Toolkit for Microsoft Excel[M]. California:Berkeley Geochronology Center, 2003. [23] 杨婧,王金荣,张旗,等. 全球岛弧玄武岩数据挖掘:在玄武岩判别图上的表现及初步解释[J]. 地质通报,2016,35(12):1937-1949. Yang Jing, Wang Jinrong, Zhang Qi, et al. Global IAB Data Excavation:The Perfor:Mance in Basalt Discrimination Diagrams and Preliminary Interpretation[J]. Geological Bulletin of China, 2016, 35(12):1937-1949 [24] 杨婧,王金荣,张旗,等. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展,2016,31(1):66-77. Yang Jing, Wang Jinrong, Zhang Qi, et al. Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB[J]. Advances in Earth Science, 2016, 31(1):66-77. [25] 王金荣,陈万峰,张旗,等. N-MORB和E-MORB数据挖掘:玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报,2017,33(3):993-1005. Wang Jinrong, Chen Wanfeng, Zhang Qi, et al. Preliminary Research on Data Mining of N-MORB and E-MORB:Discussion on Method of the Basalt Discrimination Diagrams and the Character of MORB's Mantle Source[J]. Acta Petrologica Sinica, 2017, 33(3):993-1005. [26] 吴琼. 吉林和龙官地铁矿矿床地质特征及矿化富集规律[D]. 长春:吉林大学,2017. Wu Qiong. Study on the Geological Characteristics and Enrichment Regularities of Mineralization of Guandi Fe Deposit in Helong, Jilin Province[D]. Changchun:Jilin University, 2017. [27] Wilde S A, Zhao G C, Sun M. Development of the North China Craton During the Late Archean and Its Final Amalgamation at 1.8 Ga:Some Speculations on Its Position Within a Global Paleoproterozoic Supercontinent[J]. Gondwana Research, 2002, 5:85-94. [28] 翟明国,彭澎. 华北克拉通古元古代构造事件[J]. 岩石学报,2007,23(11):2665-2682. Zhai Mingguo, Peng Peng. Paleoproterozoic Events in the North China Craton[J]. Acta Petrologica Sinica, 2007, 23(11):2665-2682. [29] 阳琼艳. 华北克拉通前寒武纪地壳演化:来自岩石学、地球化学和地质年代学的证据[D]. 北京:中国地质大学(北京),2016:1-339. Yang Qiongyan. Precambrian Crustal Evolution in the North China Craton:An Integrated Petrological, Geochemical and Geochronological Study[D]. Beijing:China University of Geosciences(Beijing), 2016:1-339. [30] Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe:Some Examples from the Western Alps[M]. Berlin Heidelberg:Springer-Verlag, Germany, 2000. [31] Möller A, O'Brien P J, Kennedy A, et al. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry:An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway)[J]. EMU Notes in Mineralogy, 2003, 5:65-82. [32] Simonen A. Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in Southwestern Finland[J]. Bulletin of the Geological Society of Finland, 1953, 160:1-64. [33] Tarney J. Geochemistry of Archaean High-Grade Gneisses, with Implications as to Origin and Evolution of the Precambrian Crust[M]. London:Wiley Publishing, 1976. [34] Walker K R, Joplin G A, Lovering J F, et al. Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime-Magnesia Sediments of the Precambrian of North-Western Queensland[J]. Journal of the Geological Society of Australia, 1959, 6(2):149-177. [35] 王仁民,贺高品,陈珍珍. 变质岩原岩图解判别法[M].北京:地质出版社,1987. Wang Renmin, He Gaopin, Chen Zhenzhen. Diagrammatic Identification of Metamorphic Rockst[M]. Beijing:Geological Publishing House, 1987. [36] Winchester J A,Floyd P A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements[J]. Chemical Geology, 1977, 20:325-343. [37] 刘明军,李厚民,薛春纪,等. 辽宁弓长岭铁矿床二矿区矿石及类矽卡岩的地球化学特征及其找矿意义[J]. 地质学报,2014, 88(10):1889-1903. Liu Mingjun, Li Houmin, Xue Chunji, et al. The Geochemical Characteristics of Ore and Skark-Like Rocks in the Second Ore District of Gongchangling Iron Deposit Liaoning Province and Their Significance in Prospecting for Ore[J]. Acta Geologica Sinica, 2014, 88(10):1889-1903. [38] 李厚民,刘明军,李立兴,等. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义[J]. 岩石学报,2014,30(5):1205-1217. Li Houmin, Liu Mingjun, Li Lixing,et al. SHRIMP U-Pb Geochronology of Zircons from the Garnet-Rich Altered Rocks in the Mining Area II of the Gongchangling Iron Deposit:Constraints on the Ages of the High-Grade Iron Deposit[J]. Acta Petrologica Sinica, 2014, 30(5):1205-1217. [39] 李志红,朱祥坤,唐索寒. 鞍山-本溪地区条带状铁矿的Fe同位素特征及其对成矿机理和地球早期海洋环境的制约[J].岩石学报,2012,28(11):3545-3558. Li Zhihong, Zhu Xiangkun, Tang Suohan. Fe Isotope Compositions of Banded Iron Formation from Anshan-Benxi Area:Constraints on the Formation Mechanism and Archean Ocean Environment[J]. Acta Petrologica Sinica, 2012, 28(11):3545-3558. [40] 张朋. 鞍本地区鞍山群茨沟岩组斜长角闪岩地球化学特征及其地质意义[C]//第一届全国青年地质大会论文集. 北京:中国地质学会青年工作委员会,2013:2. Zhang Peng. The Geochemical Characteristics and Geological Significance of the Plagioamphibolite in the Zigou Formation of Anshan Group in this Area[C]//Proceedings of the First National Geological Youth Congress. Beijing:Youth Working Committee of Geological Society of China, 2013:2. [41] Gross G A. A Classification of Iron Formations Based on Depositional Envionments[J]. Canadian Mineralogist, 1980, 18(2):215-222. [42] Gross G A. Tectonic Systems and the Deposition of Iron-Formation[J]. Precambrian Research, 1983, 20(2/3/4):171-187. [43] 卢秀全,薛世远,王堆珍. 吉林和龙太古代铁矿床地质特征、矿化类型及形成环境[J].吉林地质,2014,33(1):68-72. Lu Xiuquan, Xue Shiyuan, Wang Duizhen. Geological Features, Mineralization Type and Forming Environment of Helong Archaean Iron Deposit in Jilin Province[J]. Jilin Geology, 2014, 33(1):68-72. [44] Gourcerol B. Results of LA-ICP-MS Sulfide Mapping from Algoma-Type BIF Gold Systems with Implications for the Nature of Mineralizing Fluids, Metal Sources, and Deposit Models[J]. Mineralium Deposita, 2018, 53:871-894. [45] Taner M F, Chemam M. Algoma-Type Banded Iron Formation (BIF), Abitibi Greenstone Belt, Quebec, Canada[J]. Ore Geology Reviews, 2015, 70:31-46. [46] Alicja Wudarska. Halogen Chemistry and Hydrogen Isotopes of Apatite from the > 3.7 Ga Isua Supracrustal Belt, SW Greenland[J]. Precambrian Research, 2018, 310:153-164. [47] Kazumi Yoshiya. In-Situ Iron Isotope Analysis of Pyrites in~3.7 Ga Sedimentary Protoliths from the Isua Supracrustal Belt, Southern West Greenland[J]. Chemical Geology, 2015, 401:126-139. [48] Gill R. Igneous Rocks and Processes:A Practical Guide[M]. Wiley-Blackwell, Chichester:Blackwell Publishing Ltd, 2010. [49] Pearce J A,Cann J R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300. [50] Pearce J A,Norry M J. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1):33-47. doi:10.1007/BF00375192. [51] Fretzdorff S, Livermore R A, Devey C W, et al. Petrogenesis of the Back-Arc East Scotia Ridge, South Atlantic Ocean[J]. Journal of Petrology, 2002, 43(8):1435-1467. [52] Taylor B,Martinez F. Back-Arc Basin Basalt Systematics[J]. Earth and Planetary Science Letters, 2003, 210(3/4):481-497. [53] 刘锦,刘正宏,赵辰,等. 辽宁清河断裂以北新太古代变质表壳岩的发现及其地质意义[J]. 吉林大学学报(地球科学版),2017,47(2):497-510. Liu Jin, Liu Zhenghong, Zhao Chen, et al. Discovery of the Late Archean Supracrustal Rock to the North of Qinghe Fault in Liaoning Province and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):497-510. |
[1] | 王德远, 续海金, 王攀, 贾敏, 高占冬. 大陆造山带深熔垮塌的岩石学、地球化学证据:以北大别深熔混合岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(3): 675-693. |
[2] | 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530. |
[3] | 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541. |
[4] | 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367. |
[5] | 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391. |
[6] | 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404. |
[7] | 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424. |
[8] | 徐进军, 李宁, 金强, 刘吉华, 楼达, 滕建成. 黄骅坳陷石炭-二叠系凝析油气地球化学特征及来源分析[J]. 吉林大学学报(地球科学版), 2020, 50(2): 644-652. |
[9] | 张书义. 内蒙古新巴尔虎右旗塔木兰沟组火山岩年代学与地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 129-138. |
[10] | 施璐, 唐振, 郑常青, 秦涛, 张立东, 汪岩, 钱程, 杨帆. 大兴安岭中部柴河地区晚侏罗世花岗质岩石成因及构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(1): 112-128. |
[11] | 许中杰, 孔锦涛, 程日辉, 李双林, 孔媛, 于振峰. 下扬子南京地区早寒武世幕府山组海平面相对升降的地球化学和碳、氧同位素记录[J]. 吉林大学学报(地球科学版), 2020, 50(1): 158-169. |
[12] | 雷如雄, 赵同阳, 李平, 董连慧, 李基宏, 吴昌志. 北阿尔金地区大平沟金矿H-O-S-Pb同位素地球化学特征对金矿成因的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1578-1590. |
[13] | 程龙, 丁清峰, 邓元良, 宋凯, 张强. 东昆仑五龙沟矿集区中三叠世辉绿岩脉的岩石成因:年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1628-1648. |
[14] | 石磊, 周喜文, 郑常青, 董云峰, 周枭, 郭腾达. 浙西南遂昌—大柘地区八都岩群印支期变质变形序列[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1658-1671. |
[15] | 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284. |
|