吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1075-1089.doi: 10.13278/j.cnki.jjuese.20190126

• 地质与资源 • 上一篇    

西准噶尔萨吾尔地区吉木乃组火山岩锆石U-Pb年代学、地球化学特征及构造背景

葛海龙1,2, 张艳1,2, 王圣柱3, 杨凯凯1,2, 刘晓康1,2, 边伟华1,2   

  1. 1. 东北亚生物演化与环境教育部重点实验室(吉林大学), 长春 130061;
    2. 吉林大学地球科学学院, 长春 130061;
    3. 中石化胜利油田勘探开发研究院, 山东 东营 257000
  • 收稿日期:2019-06-21 发布日期:2020-07-29
  • 通讯作者: 边伟华(1976-),男,副教授,主要从事盆地火山岩及油气地质方面的研究,E-mail:WeihuaBian@jlu.edu.cn E-mail:WeihuaBian@jlu.edu.cn
  • 作者简介:葛海龙(1992-),男,硕士研究生,主要从事火山岩油气地质方面的研究,E-mail:gehl17@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41790453,41202085);中央高校基本科研业务费项目(2019)

Zircon U-Pb Age, Geochemical Characteristics and Tectonic Settings of Volcanic Rocks in Jimunai Formation,West Junggar Basin

Ge Hailong1,2, Zhang Yan1,2, Wang Shengzhu3, Yang Kaikai1,2, Liu Xiaokang1,2, Bian Weihua1,2   

  1. 1. Key Laboratory for Evolution of Past Life and Environment in Northeast Asia(Jilin University), Ministry of Education, China, Changchun 130061, China;
    2. College of Earth Sciences, Jilin University, Changchun 130061, China;
    3. Research Institute of Exploration and Development, Shengli Oilfield Company, SINOPEC, Dongying 257000, Shandong, China
  • Received:2019-06-21 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China(41790453,41202085) and Basic Scientific Research Business Fee of Central University (2019)

摘要: 西准噶尔萨吾尔地区吉木乃组为一套以火山碎屑岩、火山熔岩、沉积岩为主的火山-沉积地层。对该剖面顶部玄武安山岩进行LA-ICP-MS锆石U-Pb测年结果表明,吉木乃组顶部火山岩结晶年龄为(294.0±1.4) Ma,为早二叠世。结合吉木乃组内古生物化石组合,将其时代归属为晚石炭世—早二叠世。该组火山岩w(SiO2)介于48.10%~54.35%之间,主要为玄武岩、玄武安山岩;w(TFeO)为7.38%~10.92%,w(MgO)为3.35%~5.16%,Mg#介于41.02~55.05之间,主要为拉斑系列。稀土分配模式呈右倾型,轻稀土富集((La/Yb)N为4.00~6.04)且重稀土轻微分异((Gd/Yb)N为1.68~2.26),δEu=0.91~1.07,δCe=0.91~1.06。微量元素蛛网图上表现为大离子亲石元素(Rb、Ba、Sr、P)富集,除样品JM2和JM3外均表现为高场强元素(Nb、Ta、Ti)相对亏损的特征。大部分样品(Th/Nb)N值介于1.39~2.10之间,Nb/La值介于0.39~0.74之间,显示样品受到岩石圈地幔和地壳的轻微混染。吉木乃组火山岩Zr/Y值以及微量元素质量分数较高,结合相关判别图解,该组火山岩形成于后碰撞构造背景,是源于软流圈地幔的玄武质岩浆上涌,在上升过程中受到岩石圈地幔和地壳轻微混染后的产物。

关键词: 火山岩, 锆石U-Pb测年, 构造背景, 吉木乃组, 西准噶尔

Abstract: Jimunai Formation is located in Sawuer area of west Junggar basin, which is mainly composed of lava, pyroclastic rocks, and sedimentary rocks. Basaltic andesite from the upper section is (294.0±1.4) Ma by LA-ICP-MS zircon U-Pb dating. The result indicates that the lava underwent crystallization during Early Permian. Combined with local paleontological fossil assemblages, Jimunai Formation was formed in Late Carboniferous or Permian. The SiO2 content varies from 48.10% to 54.35%, belonging mainly to basalt and basaltic andesite. The total FeO content is between 7.38%-10.92%, MgO content is between 3.35%-5.16%, and Mg# index is between 41.02-55.05, mainly belonging to tholeiitic series. The rare earth element (REE) distribution pattern is right deviated, and rich in LREE ((La/Yb)N=4.00-6.04), with slight fractionation of HREE((Gd/Yb)N=1.68-2.26), δEu=0.91-1.07, δCe=0.91-1.06. The trace element spider diagram shows the enrichment of LILE (Rb, Ba, Sr, P), and moderate depletion of HFSE (Nb, Ta, Ti) except for the samples of JM2 and JM3. The ratios of (Th/Nb)N are mainly between 1.39 and 2.10, and Nb/La are between 0.39 and 0.74, indicating that the magma was partially contaminated by the lithospheric mantle and the crust. Based on the geochemical characteristics of high Zr/Y ratio, high trace element contents, the volcanic rocks of Jimunai Formation was derived from basaltic magma of asthenospheric mantle upwelling under post-collision tectonic background, and the magma was partially contaminated by lithospheric mantle and crust in the process of ascending.

Key words: volcanic rocks, zircon U-Pb dating, tectonic setting, Jimunai Formation, west Junggar basin

中图分类号: 

  • P588.14
[1] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47.
[2] Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4):102-117.
[3] Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364:299-307.
[4] Zhou T F, Yuan F, Fan Y, et al. Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China:Geochronological and Geochemical Characteristics and Their Geodynamic Significance[J]. Lithos, 2008, 106(3/4):191-206.
[5] 袁峰,周涛发,杨文平,等.新疆萨吾尔地区两类花岗岩Nd、Sr、Pb、O同位素特征[J].地质学报,2006,80(2):264-272. Yuan Feng, Zhou Taofa, Yang Wenping, et al. Nd, Sr, Pb, O Isotope Characteristics of Two Types Granites in the Sawuer Region, Xinjiang[J]. Acta Geologica Sinica, 2006, 80(2):264-272.
[6] 袁峰,周涛发,邓宇峰,等.西准噶尔萨吾尔地区主要矿床类型及成矿规律[J].岩石学报,2015,31(2):388-400. Yuan Feng, Zhou Taofa, Deng Yufeng, et al. Ore-Forming Type and Regional Metallogenic Regularity in the Sawuer Region, West Junggar, Xinjiang[J]. Acta Petrologica Sinica,2015, 31(2):388-400.
[7] 袁峰,周涛发,谭绿贵,等.西准噶尔萨吾尔地区Ⅰ型花岗岩同位素精确定年及其意义[J].岩石学报,2006,22(5):1238-1248. Yuan Feng, Zhou Taofa, Tan Lugui, et al. Isotopic Ages of the I Type Granitesin West Junggar Sawuer Region[J]. Acta Petrologica Sinica,2006, 22(5):1238-1248.
[8] 周涛发,袁峰,谭绿贵,等.新疆萨吾尔地区晚古生代岩浆作用的时限、地球化学特征及地球动力学背景[J].岩石学报,2006,22(5):1225-1237. Zhou Taofa, Yuan Feng, Tan Lugui, et al. Time Limit, Geochemical Characteristics and Tectonic Setting of Late Paleozoic Magmatism in Sawuer Region, Xinjiang[J]. Acta Petrologica Sinica,2006, 22(5):1225-1237.
[9] 谭绿贵.新疆西准噶尔萨吾尔地区后碰撞岩浆活动研究[D].合肥:合肥工业大学,2007. Tan Lugui. Post-Collisional Magmatism in Sawuer Region, West Junggar, Xinjiang, China[D]. Hefei:Hefei University of Technology, 2007.
[10] Chen J F, Han B F, Ji J Q, et al. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons In Northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115(1/2/3/4):137-152.
[11] Vladimirov A G, Kruk N N, Khromykh S V, et al. Permian Magmatism and Lithospheric Deformation in the Altai Caused by Crustal and Mantle Thermal Processes[J]. Russian Geology and Geophysics, 2008, 49(7):468-479.
[12] 周涛发,袁峰,范裕,等.西准噶尔萨吾尔地区A型花岗岩的地球动力学意义:来自岩石地球化学和锆石SHRIMP定年的证据[J].中国科学:D辑:地球科学,2006,36(1):39-48. Zhou Taofa, Yuan Feng, Fan Yu, et al. Geodynamic Significance of the A-Type Granites in the Sawuer Region in West Junggar, Xinjiang:Rock Geochemistry and SHRIMP Zircon Age Evidence[J]. Science in China:Series D:Earth Sciences, 2006, 36(1):39-48.
[13] 宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊1):26-30. Song Biao, Zhang Yuhai, Wan Yusheng, et al. Mount Making and Procedure of the SHRIMP Dating[J]. Geological Review, 2002, 48(Sup.l):26-30.
[14] 侯可军,李延河,田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492. Hou Kejun, Li Yanhe, Tian Yourong. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4):481-492.
[15] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
[16] Ludwig K R. NoIsoplot/Ex Version 3.0, a Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication, 2003.
[17] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604. Wu Yuanbao, Zheng Yongfei. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age[J]. Chinese Science Bulletin,2004, 49(16):1589-1604.
[18] Winchester J A, Floyd P A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements[J]. Chemical Geology, 1977, 20(4):325-343.
[19] Miyashiro A. Classification, Characteristics, and Origin of Ophiolites[J]. The Journal of Geology, 1975, 83(2):249-281.
[20] 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31(1):92-103. Zhao Zhenhua. How to Use the Trace Element Diagrams to Discriminate Tectonic Settings[J]. Geotectonica et Metallogenia, 2007, 31(1):92-103.
[21] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[22] Ewart A, Collerson K D, Regelous M, et al. Geochemical Evolution Within the Tonga-Kermadec-Lau Arc-Back-Arc Systems:The Role of Varying Mantle Wedge Composition in Space and Time[J]. Journal of Petrology, 1998, 39(3):331-368.
[23] 夏林圻,夏祖春,李向民,等.中国中西部及邻区大陆板内火山作用[M].北京:科学出版社,2013. Xia Linqi, Xia Zuchun, Li Xiangmin, et al. Continental Intraplate Volcanism in Mid-Western China and Its Neighboring Areas[M]. Beijing:Science Press, 2013.
[24] 新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993. Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Regional Geology of Xinjiang Uygur Autonomous Region[M]. Beijing:Geological Publishing House, 1993.
[25] 蔡土赐.新疆维吾尔自治区岩石地层[M].武汉:中国地质大学出版社,1999. Cai Tuci. Lithostratigraphy of Xinjiang Uygur Autonomous Region[M]. Wuhan:China University of Geosciences Press, 1999.
[26] 新疆地质矿产局地质矿产研究所.新疆古生界[M].乌鲁木齐:人民出版社,1991. Institute of Geology and Mineral Resources, Xinjiang Bureau of Geology and Mineral Resources. Paleozoic in Xinjiang[M]. Urumqi:People's Publishing House, 1991.
[27] Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman, 1989.
[28] Thompson R N, Morrison M A, Hendry G L, et al. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis:An Elemental Approach[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1984, 310:549-590.
[29] Fitton J G, James D, Kempton P D, et al. The Role of Lithospheric Mantle in the Generation of late Cenozoic Basic Magmas in the Western United States[J]. Journal of Petrology, 1988, Special(1):331-349.
[30] Hawkesworth C, Mantovani M, Peate D. Lithosphere Remobilization During Parana CFB Magmatism[J]. Journal of Petrology, 1988, Special(1):205-223.
[31] Hergt J W, Peate D W, Hawkesworth C J. The Petrogenesis of Mesozoic Gondwana Low-Ti Flood Basalts[J]. Earth and Planetary Science Letters, 1991, 105(1/2/3):134-148.
[32] 夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77-89. Xia Linqi, Xia Zuchun, Xu Xueyi, et al. The Discrimination Between Continental Basalt and Island Arc Basalt Based on Geochemical Method[J]. Acta Petrologica et Mineralogica, 2007, 26(1):77-89.
[33] Saunders A D, Storey M, Kent R W, et al. Consequences of Plume-Lithosphere Interaction[J]. Geological Society London Special Publications, 1992, 68(1):41-60.
[34] Kieffer B, Arndt N, Lapierre H, et al. Flood and Shield Basalts from Ethiopia:Magmas from the African Superswell[J]. Journal of Petrology, 2004, 45(4):793-834.
[35] Fitton J G, James D, Leeman W P. Basic Magmatism Associated with Late Cenozoic Extension in the Western United States:Compositional Variations in Space and Time[J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B8):13693-13711.
[36] Thorpe R S. Andesites:Orogenic Andesites and Related Rocks[M]. New York:John Wiley and Sons, 1982.
[37] Pearce J A, Mei Houjun. Volcanic Rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1988, 327:169-201.
[38] 吴小奇,刘德良,魏国齐,等.准噶尔盆地陆东-五彩湾地区石炭系火山岩地球化学特征及其构造背景[J].岩石学报,2009,25(1):55-66. Wu Xiaoqi, Liu Deliang, Wei Guoqi, et al. Geochemical Characteristics and Tectonic Settings of Carboniferous Volcanic Rocks from Ludong-Wucaiwan Area, Junggar Basin[J]. Acta Petrologica Sinica, 2009, 25(1):55-66.
[39] 郝建荣,周鼎武,柳益群,等.新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析[J].岩石学报,2006,22(1):189-198. Hao Jianrong, Zhou Dingwu, Liu Yiqun, et al. Geochemistry and Tectonic Setting of Permian Volcanic Rocks in Santanghu Basin, Xinjiang[J]. Acta Petrologica Sinica, 2006, 22(1):189-198.
[40] Hawkesworth C, Turner S, Gallagher K, et al. Calc-Alkaline Magmatism, Lithospheric Thinning and Extension in the Basin and Range[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B6):10271-10286.
[41] 李永军,沈锐,王冉,等.新疆西准噶尔巴尔努克早石炭世富Nb岛弧玄武岩的发现及其地质意义[J].岩石学报,2014,30(12):3501-3511. Li Yongjun, Shen Rui, Wang Ran, et al. Discovery and Significance of Early Carboniferous Nbenriched Basalts in Barnuke, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2014, 30(12):3501-3511.
[42] Sajona F G, Maury R C, Bellon H, et al. Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines[J]. Geology, 1993, 21(11):1007-1011.
[43] 夏林圻,夏祖春,徐学义,等.天山石炭纪火山岩系中含有富Nb岛弧玄武岩吗?[J].地学前缘,2009,16(6):303-317. Xia Linqi, Xia Zuchun, Xu Xueyi, et al. Do the Tianshan Carboniferous Volcanic Successions Contain Nb-Enriched Arc Basalts?[J]. Earth Science Frontiers, 2009, 16(6):303-317.
[44] 尹继元,陈文,肖文交,等.西准噶尔包古图I号岩体的锆石U-Pb年代学和地球化学特征[J].吉林大学学报(地球科学版),2016,46(6):1754-1768. Yin Jiyuan, Chen Wen, Xiao Wenjiao, et al. Geochronology and Geochemistry in Pluton I in Baogutu Area, West Junggar[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6):1754-1768.
[45] Castillo P R, Janney P E, Solidum R U. Petrology and Geochemistry of Camiguin Island, Southern Philippines:Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting[J]. Contributions to Mineralogy and Petrology, 1999, 134(1):33-51.
[46] Sajona F G, Bellon H, Maury R C, et al. Magmatic Response to Abrupt Changes in Geodynamic Settings:Pliocene-Quaternary Talc-Alkaline and Nb-Enriched Lavas from Mindanao (Philippines)[J]. Tectonophysics, 1994, 237(1/2):47-72.
[47] Tang G, Wyman D A, Wang Q, et al. Asthenosphere-Lithosphere Interaction Triggered by a Slab Window During Ridge Subduction:Trace Element and Sr-Nd-Hf-Os Isotopic Evidence from Late Carboniferous Tholeiites in the Western Junggar Area (NW China)[J]. Earth and Planetary Science Letters, 2012, 329/330:84-96.
[48] Castillo P R. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico[J]. Geological Society of America Bulletin, 2008, 120(3/4):451-462.
[49] Haase K M, Mühe R, Stoffers P. Magmatism During Extension of the Lithosphere:Geochemical Constraints from Lavas of the Shaban Deep, Northern Red Sea[J]. Chemical Geology, 2000, 166(3/4):225-239.
[50] 陈家富,韩宝福,张磊.西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义[J].岩石学报,2010,26(8):2317-2335. Chen Jiafu, Han Baofu, Zhang Lei. Geochemistry, Sr-Nd Isotopes and Tectonic Implications of two Generations of Late Paleozoic Plutons in Northern west Junggar, Northwest China[J].Acta Petrologica Sinica, 2010, 26(8):2317-2335.
[51] Eby G N. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7):641-644.
[1] 任云生, 刘小禾, 商青青, 陈聪, 杨群, 郝宇杰, 孙振明. 吉林省和龙地区鸡南BIF型铁矿床含矿建造地球化学特征及形成时代[J]. 吉林大学学报(地球科学版), 2020, 50(3): 800-814.
[2] 苗长盛, 徐文, 刘玉虎, 谢荣祥. 松辽盆地南部火山岩储层特征[J]. 吉林大学学报(地球科学版), 2020, 50(2): 635-643.
[3] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[4] 张书义. 内蒙古新巴尔虎右旗塔木兰沟组火山岩年代学与地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 129-138.
[5] 施璐, 唐振, 郑常青, 秦涛, 张立东, 汪岩, 钱程, 杨帆. 大兴安岭中部柴河地区晚侏罗世花岗质岩石成因及构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(1): 112-128.
[6] 周翔. 松辽盆地北部营城组火山岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1001-1014.
[7] 曾忠诚, 边小卫, 张若愚, 孔文年, 陈宁, 赵端昌, 赵江林. 西昆仑塔什库尔干下-中侏罗统龙山组沉积构造背景分析[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1039-1052.
[8] 叶涛, 韦阿娟, 黄志, 赵志平, 肖述光. 基于主成分分析法与Bayes判别法组合应用的火山岩岩性定量识别:以渤海海域中生界为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 872-879.
[9] 张超, 吴新伟, 张渝金, 郭威, 权京玉. 龙江盆地中生代火山岩锆石U-Pb年代学及其对基底性质的制约[J]. 吉林大学学报(地球科学版), 2019, 49(2): 460-476.
[10] 尹志刚, 李海娜, 张海, 郝科, 庞学昌, 宫兆民, 李敏, 张圣听. 大兴安岭加格达奇东北部花岗岩类形成时代、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1741-1755.
[11] 高福红, 何雨思, 王枫, 修铭. 黑龙江省东部早古生代晨明组物源区特征及其构造背景[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1725-1740.
[12] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050-1070.
[13] 高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 内蒙古突泉—科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 769-783.
[14] 舒晴, 朱晓颖, 高维, 李瑞, 尹航. 三塘湖盆地航磁异常特征及油气远景预测[J]. 吉林大学学报(地球科学版), 2018, 48(2): 451-460.
[15] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!