吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1648-1659.doi: 10.13278/j.cnki.jjuese.20190245
• 地质与资源 • 上一篇
范蕾1,2, 王国芝1,3, 石学法4, Astrid Holzheid2, Basem A. Zoheir2
Fan Lei1,2, Wang Guozhi1,3, Shi Xuefa4, Astrid Holzheid2, Basem A. Zoheir2
摘要: 南大西洋中脊的26°S热液区广泛发育多金属硫化物、底泥、枕状熔岩、非活动性烟囱体和活动性烟囱体。为了有效探索硫、铜等成矿物质的来源以及成矿作用过程,分别以玄武岩、烟囱体残片及块状多金属硫化物为研究对象,开展了熔融包裹体、硫同位素和铜同位素研究。结果显示:区内玄武岩新鲜未蚀变且斑晶中产出大量熔融包裹体;熔融包裹体气泡壁附着黄铜矿、黄铁矿及磁铁矿等子矿物,说明在岩浆作用过程中可从熔浆中分离出成矿所需的金属元素和硫,这些成矿元素随着岩浆去气作用进入挥发分中,并随着脱气作用迁移出来。通过对烟囱体残片及块状多金属硫化物中黄铁矿的硫同位素组成进行比对分析,发现26°S热液区内硫化物的硫同位素与大西洋各热液区硫化物的硫同位素变化范围相一致,但δ34SV-CDT值略低(3.0‰~3.9‰)。低的δ34SV-CDT值指示硫以岩浆硫源为主,海水硫酸盐还原硫占比低。黄铜矿呈现略微富铜重同位素特征且分馏程度较低,其δ65Cu值(0.171‰~0.477‰)趋近于大洋中脊玄武岩的铜同位素值(0)。综合硫同位素及铜同位素特征,表明热液流体经历了岩浆和海水的混合过程,成矿物质主要来自于岩浆热液,成矿作用过程中可能有少量海水混入。
中图分类号:
[1] Hannington M D, De Ronde C, Petersen S. Modern Sea-Floor Tectonics and Submarine Hydrothermal Systems[J]. Economic Geology, 2005, 100:111-141. [2] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of High H2 and CH4 Vent Fluids Issuing from Ultramafic Rocks at the Rainbow Hydrothermal Field (36°14'N, MAR)[J]. Chemical Geology, 2002, 191(4):345-359. [3] Douville E, Charlou J L, OelkerS E H, et al.The Rainbow Vent Fluids (36°14'N, MAR):The Influence of Ultramafic Rocks and Phase Separation on Trace Metal Content in Mid-Atlantic Ridge Hydrothermal Fluids[J]. Chemical Geology, 2002, 184(1/2):37-48. [4] Pitman Ⅲ W C,Heirtzler J R. Magnetic Anaomalies over the Pacific-Antarctic Ridge[J]. Science, 1996, 154:1164-1171. [5] Hedenquist J W, Lowenstern J B. The Role of Magmas in the Formation of Hydrothermal Ore Deposits[J]. Nature, 1994, 370:519-527. [6] Lowenstern J B, Mahood G A, Rivers M L, et al. Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase[J]. Science, 1991, 252:1405-1409. [7] Yang K H, Scott S D. PossibleContibution of Metal-Rich Magmatic Fluid to a Seafloor Hydrothermal System[J]. Nature, 1996, 383:420-423. [8] Von Damm K L. Seafloor Hydrothermal Activity:Black Smoker Chemistry and Chimneys[J]. Annual Review of Earth and Planetary Sciences, 1990, 18:173-204. [9] Cathles L M. A Capless 350 Degrees C Flow Zone Model to Explain Megaplumes, Salinity Variations, and High-Temperature Veins in Ridge Axis Hydrothermal Systems[J]. Economic Geology, 1993, 88(8):1977-1988. [10] 方捷,孙静雯,徐宏庆,等. 北大西洋中脊海底多金属硫化物资源预测[J].地球科学进展, 2015, 30(1):60-68. Fang Jie, Sun Jingwen, Xu Hongqing, et al. Prediction of Seafloor Polymetallic Sulphides Resources in the North Atlantic Ridge Area[J]. Advances in Earth Science, 2015, 30(1):60-68. [11] 戴宝章, 赵葵东, 蒋少涌.现代海底热液活动与块状硫化物矿床成因研究进展[J].矿物岩石地球化学通报,2004, 23(3):246-254. Dai Baozhang, Zhao Kuidong, Jiang Shaoyong. Modern Sea-Floor Hydrothermal Activity and Genesis of Massive Sulfide Deposit:An Overview[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(3):246-254. [12] Goodfellow W D, Franklin J M. Geology, Mineralogy, and Chemistry of Sediment-Hosted Clastic Massive Sulfides in Shallow Cores, Middle Valley, Northern Juan de Fuca Ridge[J]. Economic Geology, 1993, 88(8):2038-2068. [13] Herzig P M, Petersen S, Hannington M D. Geochemistry and Sulfur-Isotope Composition of the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158:47-70. [14] 石学法, 李兵, 叶俊, 等.南大西洋中脊热液活动及形成机制[J].矿物学报, 2015, 35(增刊1):782-783. Shi Xuefa, Li Bing, Ye Jun. Hydrothermal Activity and Formation Mechanism in the South Mid-Atlantic Ridge[J]. Acta Mineralogica Sinica, 2015,35(Sup.1):782-783. [15] Ryan W B F, Carbotte S M, Coplan J O, et al. Global Multi-Resolution Topography (GMRT) Synthesis Data Set[J], Geochemistry, Geophysics, Geosystems, 2009, 10(3), Q03014. [16] Carbotte S, Welch S M, Macdonald K C. Spreading Rates, Rift Propogation, and Fracture Zone Offset Histories During the Past 5 My on the Mid-Atlantic Ridge:25°S-27°30'S and 31°S-34°30'S[J]. Marine Geophysical Researches, 1991, 13(1):51-80. [17] Niu Y L, Batiza R. Magmatic Processes at a Slow Spreading Ridge Segment:26°S Mid-Atlantic Ridge[J]. AGU of Geophysical Research, 1994, 99(10):19719-19740. [18] Devey C W. SoMARTherm:The Mid-Atlantic Ridge 13°S-33°S[M]. Bremen:DFG-Senatskommission für Ozeanographie, 2014. [19] Lin J, Purdy G M, Schouten H, et al. Evidence for Focused Magmatic Accretion Along the Mid-Atlantic Ridge[J]. Nature,1990, 344:627-632. [20] Grindlay N R, Fox P J, Macdonald K C. Second-Order Ridge Axis Discontinuities in the South Atlantic:Morphology, Structure and Evolution[J]. Marine Geophysical Researches, 1991, 13(1):21-49. [21] Michael P J, Forsyth D W, Blackman D K, et al. Mantle Control of a Dynamically Evolving Spreading Center:Mid-Atlantic Ridge 31°S-34°S[J]. Earth and Planetary Science Letters, 1994, 121(3/4):451-468. [22] GEBCO Compilation Group. GEBCO 2018 Grid[DB/OL].https://www.gebco.net/data_and_products/gridded_bathymetry_data/,2018. [23] Regelous M, Niu Y, Abouchami W, et al. Shallow Origin for South Atlantic Dupal Anomaly from Lower Continental Crust:Geochemical Evidence from the Mid-Atlantic Ridge at 26°S[J]. Lithos, 2009, 112(1/2):57-72. [24] 牛耀龄.全球构造与地球动力学:岩石学与地球化学方法应用实例[M].北京:科学出版社,2013:1-307. Niu Yaoling. Global Structure and Geodynamics-Examples of Petrology and Geochemistry Applications[M]. Beijing:Science Press, 2013:1-307. [25] Peters M, Strauss H, Farquhar J, et al.Sulfur Cycling at the Mid-Atlantic Ridge:A Multiple Sulfur Isotope Approach[J]. Chemical Geology, 2010, 269(3/4):180-196. [26] Othman D B, Luck J M, Bodinier J L, et al. Cu-Zn Isotopic Variations in the Earth's Mantle[J]. Geochimica et Cosmochimica Acta, 2006, 70(Sup. l):A46. [27] 李霓,樊祺诚.岩浆脱气作用研究[C]//2001年中国地球物理学会年刊:中国地球物理学会第十七届年会论文集.北京:中国地球物理学会, 2001:281. Li Ni, Fan Qicheng. Research on Magmatic Degassing[C]//2001 Annual Journal of Chinese Geophysical Society:Proceedings of the 17th Annual Conference of the Chinese Geophysical Society. Beijing:Chinese Geophysical Society, 2001:281. [28] 张海桃. 南大西洋中脊19°S附近玄武岩与斜长石斑晶熔融包裹体特征及其对岩浆作用的指示意义[D].青岛:国家海洋局第一海洋研究所, 2015:36-40. Zhang Haitao. Mid-Oceanic Ridge Basalts(MORB) Chemistry and Characteristics of Plagioclase-Hosted Melt Inclusions in the South Atlantic Ridge 19°S and Implications for Magmatic Processes[D]. Qingdao:The First Institute of Oceanography, State Oceanic Administration, 2015:36-40. [29] 唐鑫,杨耀民,王国芝,等.南大西洋15°S热液区玄武岩中熔融包裹体组成及意义[J].成都理工大学学报(自然科学版),2016, 43(3):363-371. Tang Xin, Yang Yaomin, Wang Guozhi, et al. The Significances and Compositions of Melt Inclusions in the Basalt from South Atlantic 15°S Hydrothermal Field[J]. Journal of Chengdu University of Technology (Sciences & Technology Eition), 2016, 43(3):363-371. [30] Shinohara H,Kazahaya K, Lowenstern J B. Volatile Transport in a Convecting Magma Column:Implications for Porphyry Mo Mineralization[J]. Geology, 1995, 23(12):1091-1094. [31] Gemmell J B. Geochemistry of Metallic Trace Elements in Fumarolic Condensates from Nicaraguan and Costa Rican Volcanoes[J]. Journal of Volcanology and Geothermal Research, 1987, 33(1/2/3):161-181. [32] Symonds R B, Rose W I, Bluth G S, et al. Volcanic Gas Studies:Methods, Results and Applications[J]. Reviews in Mineralogy and Geochemistry, 1994, 30(1):1-66. [33] Lowenstern J B. Evidence for a Copper-Bearing Fluid in Magma Eruptered at the Valley of Ten Thousand Smokers, Alaska[J]. Conributions to Mineralogy & Petrology, 1993, 114(3):408-421. [34] Heinrich C A, Ryan C G, Mernagh T P, et al. Segregation of Ore Metals Between Magmatic Brine and Vapor:A Fluid Inclusion Study Using PIXE Microanalysis[J]. Economic Geology, 1992, 87(6):1566-1583. [35] Yang K, Scott S D. Possible Contribution of a Metal-Rich Magmatic Fluid to a Sea-Floor Hydrothermal System[J]. Nature, 1996, 383:420-423. [36] Stoiber R E, Rose W I. Fumarole Incrustations at Active Central American Volcanoes[J]. Geochimica et Cosmochimica Acta, 1974, 38(4):495-516. [37] 冷成彪,张兴春,王守旭,等.岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质评论,2009, 55(1):731-743. Leng Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of Researches on the Evolution of Ore-Forming Fluids and the Vapor Transport of Metals in Magmatic-Hydrothermal Systems[J]. Geological Review, 2009, 55(1):731-743. [38] Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J]. Economic Geology, 1972, 67(5):551-578. [39] Shank III W C, Bischoff J L, Rosenbauer R J. Seawater Sulfate Reduction and Sulfur Isotope Fractionation in Basaltic Systems:Interaction of Seawater with Fayalite and Magetite at 200-350℃[J]. Geochimica et Cosmochimica Acta, 1981, 45(11):1977-1995. [40] Shank III W C. Stable Isotopes in Seafloor Hydrothermal Systems:Vent Fluids, Hydrothermal Deposits, Hydrothermal Alteration and Microbial Processes[C]//Valley J W, Cole D R. Stable Isotope Geochemistry. Washington D C:Mineralogical Society of America and the Geochemical Society:Reviews in Mineralogy and Geochemistry, 2001:469-517. [41] Ono S, Shanks W C, Rouxel O J, et al. S-33 Constraints on the Seawater Sulfate Contribution in Modern Seafloor Hydrothermal Vent Sulfides[J]. Geochemica et Cosmochimica Acta, 2007, 71(5):1170-1182. [42] Rouxel O, Fouquet Y, Ludden J N. Copper Isotope Systematics of the Lucky Strike, Rainbow and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 99(3):585-600. [43] Bogdanow Y A, Bortnikov N S, Vikent I V, et al. Mineralogical-Geochemical Pecularities of Hydrothermal Sulfide Ores and Fluids in the Rainbow Field Associated with Serpentinites, Mid-Atlantic Ridge(36°14'N)[J]. Geology of Ore Deposit, 2002, 44(6):444-473. [44] Butler I B,Fallick A E, Nesbitt R W. Mineralogy, Sulphur Isotope Geochemistry and the Development of Sulphide Structures at the Broken Spur Hydrothermal Vent Site, 29 Degrees 10'N, Mid-Atlantic Ridge[J]. Journal of the Geological Society, 1998, 155(5):773-785. [45] Petersen S. The Geochemical and Mineralogical Evolution of the TAG Hydrothermal Field, Mid-Atlantic Ridge, 26°N[J]. TU Bergakademie Freiberg, 2000, 35(2/3):233-259. [46] Kase K, Yamamoto M, Shibata T. Copper-Rich Sulfide Deposits Near 23°N, Mid-Atlantic Ridge:Chemical Composition, Mineral Chemistry, and Sulfur Isotopes[J]. Ocean Drilling Program Scientific Results, 1990, 106/107/108/109:163-172. [47] Ree C E, Jenkins W J, Monster J. The Sulfur Isotopic Composition of Ocean Water Sulphate[J]. Geochimica et Cosmochimica Acta, 1978, 42(4):337-381. [48] 李振清,杨志明,朱祥坤,等. 西藏驱龙斑岩铜矿铜同位素研究[J].地质学报,2009,83(12):1985-1996. Li Zhenqing, Yang Zhiming, Zhu Xiangkun, et al. Cu Isotope Composition of Qulong Porphyry Cu Deposit, Tibet[J]. Acta Geologica Sinica, 2009, 83(12):1985-1996. [49] 李小虎,初凤友,雷吉江,等.青海德尔尼铜(锌钴)矿床硫化物Cu同位素组成及矿床成因探讨[J].地学前缘,2014,21(1):196-204. Li Xiaohu, Chu Fengyou, Lei Jijiang, et al. The Copper Isotopic Composition of Sulfide Ores and Deposit Genesis of the Dur'ngoi Cu (Zn-Co) Deposit in Qinghai Province, China[J]. Earth Science Frontiers, 2014, 21(1):196-204. [50] Zhu X K,O'Nios R K, Guo Y, et al. Determination of Natural Cu-Isotope Variation by Plasma-Source Mass Spectrometry:Implications for Use as Geochemical Tracers[J]. Chemical Geology,2000,163(1):139-149. [51] Vance D, Archer C,Bermin J, et al. The Copper Isotope Geochemistry of Rivers and the Oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2):204-213. |
[1] | 李洪梁, 李光明, 丁俊, 张志, 卿成实, 付建刚, 凌晨, 刘宇奇. 藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1289-1303. |
[2] | 黄式庭, 于晓飞, 吕志成, 刘家军, 李永胜, 杜泽忠, 吕鑫, 孙海瑞, 杜轶伦. 甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1387-1403. |
[3] | 代军治, 高菊生, 钱壮志, 张龙斌, 周金隆, 李平, 高毅. 小秦岭镰子沟金矿床地质特征、黄铁矿原位硫同位素组成及成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1669-1682. |
[4] | 王春连,刘成林,徐海明,王立成,沈立建. 湖北江陵凹陷古新统沙市组四段硫酸盐硫同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(3): 691-703. |
[5] | 李碧乐,沈鑫,陈广俊,杨延乾,李永胜. 青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1676-1687. |
[6] | 王跃, 朱祥坤. 铜同位素在矿床学中的应用:认识与进展[J]. J4, 2010, 40(4): 739-751. |
[7] | 袁波,陈世悦,袁文芳,朱建伟. 济阳坳陷沙河街组锶硫同位素特征[J]. J4, 2008, 38(4): 613-0617. |
[8] | 曾庆栋,刘建明,贾长顺,万志民,于昌明,叶杰,刘红涛. 内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因:地质和硫同位素证据[J]. J4, 2007, 37(4): 659-0667. |
|