吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1862-1869.doi: 10.13278/j.cnki.jjuese.20190203

• 地质工程与环境工程 • 上一篇    

电镀废水改进的CAFE处理工艺设计及案例

房春生, 王殿升, 推玥, 高晗博, 王菊   

  1. 吉林大学新能源与环境学院, 长春 130021
  • 收稿日期:2019-09-15 发布日期:2020-12-11
  • 通讯作者: 王菊(1971-),女,教授,主要从事经济学及环境规划与评价相关研究,E-mail:wangju@jlu.edu.cn E-mail:wangju@jlu.edu.cn
  • 作者简介:房春生(1971-),男,教授,主要从事环境规划与评价相关研究,E-mail:fangcs@jlu.edu.cn
  • 基金资助:
    吉林省生态环境厅基金项目(2019-08)

Innovated CAFE Process Design and Case Study of Advanced Treatment of Electroplating Wastewater

Fang Chunsheng, Wang Diansheng, Tui Yue, Gao Hanbo, Wang Ju   

  1. College of New Energy and Environment, Jilin University, Changchun 130021, China
  • Received:2019-09-15 Published:2020-12-11
  • Supported by:
    Supported by Ecology and Environemnt Department of Jilin Province(2019-08)

摘要: 电镀园区废水处理过程中,由于园区企业难以做到彻底的分质分流,导致废水处理出现破络不彻底,次亚磷酸盐、氰化物等出现再络合与难降解等问题,同时,深度处理后,浓水需要进行深度处理,重金属离子浓度、总磷、总氮处理都存在难以达标的情况。本文根据企业电镀废水的典型水质和水量特征,研究设计了改进的CAFE处理工艺,详细论证了各工艺的处理过程、主要设备及相关设计参数,并将该工艺在南通某电镀园区电镀废水处理中进行了实际应用。运行的实践表明,该套设计方案污水处理运行稳定,最终出水的CODCr(化学需氧量)、NH4-N、总铬、六价铬、总镍指标的平均质量浓度分别为34.00、5.41、0.29、0.03、0.05 mg/L,均远远小于电镀废水的排放标准,达到了电镀废水的深度处理要求。

关键词: 电镀废水, 分质预处理, 污水深度处理, 改进的CAFE处理工艺

Abstract: In the process of wastewater treatment in an electroplating park, due to the difficulty of the enterprises in the park to completely separate the quality, the complex breaking of the wastewater treatment is not complete, the hypophosphite and cyanide are complex and difficult to degrade. At the same time,the concentrate has to be treated by advanced treatment, as after the treatment, the contents of metals, total phosphate and nitrogen are still not meet the drainage industial standard. According to the typical water quality and water quantity characteristics of electroplating wastewater in enterprises,the authors studied and designed the advanced treatment technology of innovated CAFE(catalysis-adsorption-filtration-exchange),and introduced in detail the treatment technology, the process,the main equipment and the related design parameters of each process,and further carried out the actual treatment of electroplating wastewater in an electroplating industrial park in Nantong. The practical application shows that the waste water treatment operation of the design scheme is stable. The average concentrations of CODCr,NH4-N,total chromium,hexavalent chromium, and total nickel in the final effluent are 34.00,5.41,0.29,0.03, and 0.05 mg/L,respectively,which are far less than the discharge standards of electroplating wastewater and meet the requirements of advanced treatment of electroplating wastewater. Based on cost-benefit analysis,the treatment has a good market prospect.

Key words: electroplating wastewater, quality pretreatment, wastewater advanced treatment, innovated CAFE process

中图分类号: 

  • X703
[1] 黄志雄.综合电镀废水处理技术及其工艺优化研究[J].中国高新区,2017(22):148-150. Huang Zhixiong. Study on Comprehensive Electroplating Wastewater Treatment Technology and Process Optimization[J]. Science & Technology Industry Parks,2017(22):148-150.
[2] 王磊,脱培植,时旋,等.电镀废水深度处理实用工艺研究[J].山东化工,2011,40(8):65-67. Wang Lei,Tuo Peizhi,Shi Xuan.et al,Study on Practical Technology for Advanced Treatment of Electroplating Wastewater[J]. Shandong Chemical Industry,2011,40(8):65-67.
[3] 林凯城,李永莲,郑锐东,等.电镀废水处理工艺及趋势[J].山东化工,2018,47(22):190-191. Lin Kaicheng,Li Yonglian,Zheng Ruidong,et al.Technology and Trend of Electroplating Wastewater Treatment[J]. Shandong Chemical Industry,2018,47(22):190-191.
[4] Fu Fenglian,Wang Qi. Removal of Heavy Metal Ions from Waste Waters:A Review[J]. Journal of Environment,2011,92:407-418.
[5] Mirbagheri S A,Hosseini S N. Pilot Plant Investigation on Petrochemical Waste Water Treatment for the Removal of Copper and Chromium with the Objective of Reuse[J]. Desalination,2005,171(1):85-93.
[6] Aziz H A,Adlan M N,Ariffin K S. Heavy Metals (Cd,Pb,Zn,Ni,Cu and Cr(Ⅲ)) Removal from Water in Malaysia:Post Treatment by High Quality Limestone[J].Bioresource Technology,2008,99(6):1578-1583.
[7] Ghosh P,Samanta A N,Ray S. Reduction of COD and Removal of Zn2+ from Rayon Industry Wastewater by Combined Electro-Fenton Treatment and Chemical Precipitation[J]. Desalination,2011,266(1/2/3):213-217.
[8] Rengaraj S,Yeon K H,Moon S H. Removal of Chromium from Water and Waste Water by Ion Exchange Resins[J]. Journal of Hazardous Materials,2001,87(1):273-287.
[9] Eom T H,Lee C H,Kim J H,et al. Development of an Ion Exchange System for Plating Waste Water Treatment[J]. Desalination,2005,180(1):163-172.
[10] Nah I W,Hwang K Y,Jeon C,et al. Removal of Pb Ion from Water by Magnetically Modified Zeolite[J].Minerals Engineering,2006,19(14):1452-1455.
[11] Aklil A,Mouflih M,Sebti S. Removal of Heavy Metal Ions from Water by Using Calcined Phosphateas a New Adsorbent[J]. Journal of Hazardous Materials,2004,112(3):183-190.
[12] 程仁振,邱立平,刘贵彩,等.陶瓷膜-反渗透工艺用于电镀废水深度处理[J].中国给水排水,2018,34(14):41-45. Cheng Renzhen,Qiu Liping,Liu Guicai,et al. Advanced Treatment of Electroplating Wastewater by Ceramic Membrane-Reverse Osmosis Process[J]. Water Supply and Drainage in China,2018,34(14):41-45.
[13] 于望,蒋小友,吴军. SBR工艺处理电镀废水的运行参数探讨[J].绿色科技,2017,24(24):52-55. Yu Wang,Jiang Xiaoyou,Wu Jun. Discussion on Operating Parameters of SBR Process for Electroplating Wastewater Treatment[J]. Green Technology,2017,24(24):52-55.
[14] 包子健.电镀废水纳滤膜NF浓缩回用研究[D].杭州:浙江大学,2012; Bao Zijian. Study on Concentration and Reuse of Nanofiltration Membrane for Electroplating Wastewater[D]. Hangzhou:Zhejiang University,2012.
[15] Belkacem M,Khodir M,Abdelkrim S. Treatment Characteristics of Textile Waste Water and Removal of Heavy Metals Using the Electro Flotation Technique[J]. Desalination,2008,8(1):245-254.
[16] 电镀污染物排放标准:GB 21900-2008[S].北京:中国环境出版社,2008. Emission Standard of Pollutants for Electroplating:GB 21900-2008[S]. Beijing:China Environment Press, 2008.
[17] 黄继国,张永祥.GT-铁氧化法处理含铬废水实验研究[J].吉林大学学报(地球科学版),2000,30(1):66-67. Huang Jiguo,Zhang Yongxiang. Experiment Research on GT-Ferrite Process for Treatment of Chromium-Containing Wastewater[J]. Journal of Jilin University (Earth Science Edition),2000,30(1):66-67.
[1] 刘娜, 张朋朋, 丁隆真, 陈红, 焦昕倩. 氮掺杂碳材料活化过硫酸盐降解4-氯苯酚[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1173-1181.
[2] 宫志强, 田西昭, 刘伟江, 陈坚, 康阳, 杨光, 党志文. 抽出-处理技术抽出污染地下水——抽出效率及抽出终点[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1139-1150.
[3] 万立国, 林巧, 张丽君, 张文华, 龙北生, 任志敏. 固体停留时间对HLB-MR反应器直接回收城市污水中有机物的影响[J]. 吉林大学学报(地球科学版), 2020, 50(1): 243-251.
[4] 刘娜, 丁吉阳, 于庆民, 张思达, 赵宏君, 吕春欣. 超声强化零价铁活化过硫酸盐降解地下水中二恶烷[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1831-1837.
[5] 娄军芳, 汤洁, 宋扬. 单室无膜微生物电解池中阴极生物膜的电活性[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1247-1254.
[6] 邹东雷, 唐抒圆, 熊厚峰, 唐绍福, 李春华, 陈鹏. β-环糊精交联聚合物对氯苯的吸附特性[J]. J4, 2012, 42(4): 1166-1172.
[7] 周丹丹, 刘孟媛, 侯典训, 王紫嫣, 梁爽, 董双石. 连续流气提式流化床启动过程中好氧颗粒污泥的形成机制[J]. J4, 2012, 42(1): 212-219.
[8] 宋志伟, 程晓霞, 乔艳云, 潘宇, 罗克洁. 接种污泥对好氧颗粒污泥稳定性的影响[J]. J4, 2011, 41(3): 873-878.
[9] 彭举威, 康春莉, 崔玉波, 刘显臣, 韩相奎. 表面流人工湿地处理糠醛生产废水的应用[J]. J4, 2010, 40(6): 1419-1424.
[10] 崔玉波, 杨少华, 黄继国. 贝壳填料酸化反应器预处理生活污水试验[J]. J4, 2010, 40(6): 1425-1428.
[11] 黄继国, 高文翰, 董莉莉, 孟玉丽, 周秀, 杨柳. ABR-生物接触氧化工艺处理低碳氮比生活污水试验[J]. J4, 2010, 40(5): 1163-1169.
[12] 刘鹏, 张兰英, 刘莹莹, 刘娜, 刘峰, 刘虹, 崔哲, 许国欣. 组合生物技术处理制药废水及其生物相[J]. J4, 2010, 40(1): 169-175.
[13] 路杨, 刘相国, 杨朔, 宁波, 张晓英, 郝东云. 地下水中锰离子氧化细菌的分离与筛选鉴定[J]. J4, 2009, 39(6): 1117-1121.
[14] 董军, 许超, 孙艳, 孙玥, 孙惠森. 垃圾渗滤液污染场地NO-3、PO3-4和SO2-4对微生物活性的影响[J]. J4, 2009, 39(6): 1122-1126.
[15] 张兰英, 刘峰, 刘娜. 预处理/复合水解酸化/复合好氧氧化工艺处理综合制药废水[J]. J4, 2008, 38(6): 1020-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!