吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 243-251.doi: 10.13278/j.cnki.jjuese.20180272

• 地质工程与环境工程 • 上一篇    

固体停留时间对HLB-MR反应器直接回收城市污水中有机物的影响

万立国1,2, 林巧1, 张丽君1, 张文华1,2, 龙北生1,2, 任志敏1,2   

  1. 1. 长春工程学院水利与环境工程学院, 长春 130012;
    2. 吉林省城市污水处理重点实验室(长春工程学院), 长春 130012
  • 收稿日期:2018-10-25 发布日期:2020-02-11
  • 作者简介:万立国(1982-),男,副教授,主要从事污水处理及资源化研究,E-mail:wanliguoking@163.com
  • 基金资助:
    国家科技重大专项(2012ZX07202-009-01);吉林省自然科学基金项目(20180101317JC);吉林省省级产业创新专项资金项目(2019C055);吉林省重点科技攻关项目(20160204006SF);长春工程学院种子基金项目(320180027)

Effects of Solid Retention Time on Organic Matter Recovery Directly from Municipal Wastewater by High Loaded Bioflocculation Membrane Reactor

Wan Liguo1,2, Lin Qiao1, Zhang Lijun1, Zhang Wenhua1,2, Long Beisheng1,2, Ren Zhimin1,2   

  1. 1. School of Water Conservancy&Environment Engineering, Changchun Institute of Technology, Changchun 130012, China;
    2. Jilin Provincial Key Laboratory of Municipal Wastewater Treatment(Changchun Institute of Technology), Changchun 130012, China
  • Received:2018-10-25 Published:2020-02-11
  • Supported by:
    Supported by National Science and Technology Major Project (2012ZX07202-009-01), Natural Science Foundation of Jilin Province (20180101317JC), Provincial Industrial Innovation Special Fund of Jilin Province (2019C055), Key Science and Technology of Jilin Province (20160204006SF) and Seed Foundation of Changchun Institute of Technology (320180027)

摘要: 为优化高负荷生物絮凝-膜反应器(HLB-MR)的工艺参数,提高其资源化城市污水的效能,采用平行对比实验,考察了不同固体停留时间(tSR)条件下反应器的有机物去除效率、生物絮凝效果、有机物回收效果和膜污染情况。结果表明:在tSR分别为0.2、0.6、1.0 d时,HLB-MR反应器有机物去除效率均在85%以上,其出水化学需氧量(COD)质量浓度均保持在30 mg/L左右;反应器内的生物絮凝效果随着tSR的延长而增强,其胶体COD絮凝效率从tSR为0.2 d时的66%增加到tSR为1.0 d时的95%,与此同时,有机物的矿化损失率也逐渐增加,从tSR为0.2 d时的6.9%增加到tSR为1.0 d时的10.5%,总COD的回收率逐渐降低;反应器内浓缩液的膜污染潜势随着tSR的延长逐渐缓解,这与较长tSR条件下反应器内胞外聚合物(EPS)产量较高、生物絮凝效果较好、微细颗粒(0~1 μm)的颗粒浓度较低有关。经过综合对比分析,0.6 d为反应器较优的tSR参数,在该条件下,胶体COD的絮凝效率高达90%,膜污染程度较轻;总COD的矿化损失率低至7.4%,总COD的回收率(忽略膜清洗时有机物损失)可高达80%以上。

关键词: 城市污水, 固体停留时间, 生物絮凝, 膜反应器, 有机物回收, 膜污染

Abstract: In order to optimize the process parameter of high loaded bioflocculation-membrane reactor (HLB-MR) and improve its efficiency of recovering organics in municipal wastewater, the organics removal, bioflocculation, organics recovery, and membrane fouling of the reactor were investigated under different solid retention time (tSR) in parallel. When the HLB-MR operated at tSR of 0.2, 0.6, and 1.0 d respectively, all the efficiencies of organics removal reached above 85% and the chemical oxygen demands (COD) of permeate were all stable at around 30 mg/L. The bioflocculation effect was enhanced with the extension of tSR, and the flocculation efficiency of colloid COD increased from 66% when tSR was 0.2 d to 95% when tSR was 1.0 d. The mineralization loss rate of organics increased gradually from 6.9% when tSR was 0.2 d to 10.5% when tSR was 1.0 d, while the recovery rate of total COD decreased gradually. The membrane fouling potential of the concentrate in the reactor was gradually alleviated with the extension of tSR, which was related to higher EPS yield, better bioflocculation effect and lower particle fraction of fine particles (0-1 μm) under a longer tSR in the reactor. Compared with 0.2 d and 1.0 d, 0.6 d was considered to be optimal tSR of the HLB-MR from a comprehensive perspective. Under this condition, the flocculation efficiency of COD was up to 90%, the membrane fouling was relatively light, the total COD loss rate was as low as 7.4%, and the recovery rate of total COD could be as high as 80% if the loss of organic matter was ignored during the membrane cleaning.

Key words: municipal wastewater, solid retention time, bioflocculation, membrane reactor, organics recovery, membrane fouling

中图分类号: 

  • X703.1
[1] Gao H,Scherson Y D, Wells G F, et al. Towards Energy Neutral Wastewater Treatment:Methodology and State of the Art[J]. Environmental Science:Processes & Impacts, 2014, 16(6):1223-1246.
[2] Verstraete W, Vlaeminck S E. Zerowastewater:Short-Cycling of Wastewater Resources for Sustainable Cities of the Future[J]. International Journal of Sustainable Development & World Ecology, 2011, 18(3):253-264.
[3] Yamamura H,Okimoto K, Kimura K, et al. Hydrophilic Fraction of Natural Organic Matter Causing Irreversible Fouling of Microfiltration and Ultrafiltration Membranes[J]. Water Research, 2014, 54(5):123.
[4] Huang H, Lee N, Young T, et al. Natural Organic Matter Fouling of Low-Pressure, Hollow-Fiber Membranes:Effects of NOM Source and Hydrodynamic Conditions[J]. Water Research, 2007, 41(17):3823-32.
[5] Rosenberger S,Laabs C, Lesjean B, et al. Impact of Colloidal and Soluble Organic Material on Membrane Performance in Membrane Bioreactors for Municipal Wastewater Treatment[J]. Water Research, 2006, 40(4):710-720.
[6] Le-Clech P, Chen V, Fane T A G. Fouling in Membrane Bioreactors Used in Wastewater Treatment[J]. Journal of Membrane Science, 2006, 284(1):17-53.
[7] Akanyeti I, Temmink H, Remy M, et al. Feasibility of Bioflocculation in a High-Loaded Membrane Bioreactor for Improved Energy Recovery from Sewage[J]. Water Science and Technology, 2010, 61(6):1433-9.
[8] Faust L,Temmink H, Zwijnenburg A, et al. High Loaded MBRs for Organic Matter Recovery from Sewage:Effect of Solids Retention Time on Bioflocculation and on the Role of Extracellular Polymers[J]. Water Research, 2014, 56(6):258-266.
[9] 国家环境保护总局. 水和废水监测分析方法[M]. 四版.北京:中国环境科学出版社, 2002. State Environmental Protection Administration of China. Monitoring and Analytic Methods of Water and Wastewater[M]. 4th ed. Beijing:Environmental Science Press of China, 2002.
[10] Lowry O H,Rosebrough N J, Farr A L, et al. Protein Measurement with the Folin Phenol Reagent[J]. Journal of Biological Chemistry, 1951, 193(1):265-275.
[11] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric Method for Determination of Sugars and Related Substances[J]. Analytical Chemistry, 1956, 28(3):350-356.
[12] Gong H, Jin Z Y, Wang Q B, et al. Effectsof Adsorbent Cake Layer on Membrane Fouling During Hybrid Coagulation/Adsorption Microfiltration for Sewage Organic Recovery[J]. Chemical Engineering Journal, 2017, 317:751-757.
[13] 詹咏, 张焕焕, 冯青青, 等. 不同泥龄对活性污泥絮凝特性的影响[J]. 环境工程学报, 2017, 11(11):5836-5842. Zhan Yong, Zhang Huanhuan, Feng Qingqing, et al. Effects of SRT on Active Sludge Bioflocculation[J]. Chinese Journal of Environmental Engineering, 2017, 11(11):5836-5842.
[14] Liss S N, Liao B Q, Droppo I G, et al. Effect of Solids Retention Time on Floc Structure[J]. Water Science and Technology, 2002, 46(1/2):431.
[15] Li X Y, Yang S F. Influence of Loosely Bound Extracellular Polymeric Substances (EPS) on the Flocculation, Sedimentation and Dewaterability of Activated Sludge[J]. Water Research, 2007, 41(5):1022-1030.
[16] Chen K, Wang X H, Li X F, et al.Impacts of Sludge Retention Time on the Performance of Submerged Membrane Bioreactor with the Addition of Calcium Ion[J]. Separation and Purification Technology, 2011, 82(44):148-155.
[17] Tian Y,Su X Y. Relation Between the Stability of Activated Sludge Flocs and Membrane Fouling in MBR:Under Different SRTs[J]. Bioresource Technology, 2012, 118(4):477-482.
[18] Han S S, Jang B G G, Tak T M. Influence of Sludge Retention Time on Membrane Fouling and Bioactivities in Membrane Bioreactor System[J]. Process Biochemistry, 2005, 40(7):2393-2400.
[19] Huang Z, Ong S L, Ng H Y. Submerged Anaerobic Membrane Bioreactor for Low-Strength Wastewater Treatment:Effect of HRT and SRT on Treatment Performance and Membrane Fouling[J]. Water Research, 2011, 45(2):705-713.
[20] Broeck R V D, Dierdonck J V, Nijskens P, et al. The Influence of Solids Retention Time on Activated Sludge Bioflocculation and Membrane Fouling in a Membrane Bioreactor (MBR)[J]. Journal of Membrane Science, 2012, 401/402(10):48-55.
[21] Wisniewski C,Grasmick A. Floc Size Distribution in a Membrane Bioreactor and Consequences for Membrane Fouling[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1998, 138(2):403-411.
[22] 城镇污水处理厂污染物排放标准:GB18918-2002[S] 北京:中国环境出版社,2003. Standard for Discharge of Pollutants from Sewage Treatment Works in Towns and Cities:GB18918-2002[S]. Beijing:China Environmental Press,2003.
[23] 张凤君, 王顺义, 刘田, 等. 投加粉末活性炭对MBR运行性能的影响[J]. 吉林大学学报(地球科学版), 2007,37(2):148-152. Zhang Fengjun, Wang Shunyi, Liu Tian, et al. Effect of Dosing Powdered Activated Carbon on Operational Performances of MBR[J]. Journal of Jilin University (Earth Science Edition), 2007,37(2):148-152.
[24] 宋志伟, 杨帆, 任南琪. 膜生物反应器中膜污染机理及其防治[J]. 吉林大学学报(地球科学版), 2008,38(4):152-156. Song Zhiwei, Yang Fan, Ren Nanqi. Mechanism of Membrane Fouling in Membrane Bioreactor and Its Prevention[J]. Journal of Jilin University (Earth Science Edition), 2008,38(4):152-156.
[1] 宋志伟, 王秋旭, 宁婷婷, 任南琪, 李立欣. 微生物絮凝剂投加方式对好氧颗粒污泥性能的影响[J]. 吉林大学学报(地球科学版), 2015, 45(1): 247-254.
[2] 崔玉波, 杨少华, 黄继国. 贝壳填料酸化反应器预处理生活污水试验[J]. J4, 2010, 40(6): 1425-1428.
[3] 张玉玲,姚军,赵晓波,曹春英,郑松志. 复合型微生物絮凝剂产生菌YL3的优化条件[J]. J4, 2008, 38(5): 864-0868.
[4] 宋志伟,杨帆,任南琪. 膜生物反应器中膜污染机理及其防治[J]. J4, 2008, 38(4): 676-0680.
[5] 邵丕红,韩相奎,艾胜书,刘红波. 异波折板多段两相厌氧城市污水处理工艺试验研究[J]. J4, 2007, 37(4): 789-0792.
[6] 王羽生,马小凡,王雨亮,程海军,吕志勇. 复合生物反应器处理城市污水的试验研究[J]. J4, 2005, 35(03): 373-0377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!