吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1897-1904.doi: 10.13278/j.cnki.jjuese.20190157

• 地球探测与信息技术 • 上一篇    

2019年5月18日松原M5.1地震构造机制分析

阮庆丰1, 刘财1, 刘俊清2, 张宇2, 郑国栋2   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 吉林省地震局, 长春 130117
  • 收稿日期:2019-08-06 发布日期:2020-12-11
  • 通讯作者: 刘俊清(1977-),男,高级工程师,主要从事地震火山监测预报方面的研究,E-mail:liujq9@126.com E-mail:liujq9@126.com
  • 作者简介:阮庆丰(1992-),男,博士研究生,主要从事天然地震构造机制的研究,E-mail:438061474@qq.com
  • 基金资助:
    国家自然科学基金项目(41430322)

Analysis of Tectonic Mechanism of Songyuan M5.1 Earthquake on May 18, 2019

Ruan Qingfeng1, Liu Cai1, Liu Junqing2, Zhang Yu2, Zheng Guodong2   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Jilin Earthquake Agency, Changchun 130117, China
  • Received:2019-08-06 Published:2020-12-11
  • Supported by:
    Supported by National Natural Science Foundation of China (41430322)

摘要: 基于区域地震台网的数字化波形资料,使用ISOLA方法对2019年5月18日吉林松原M5.1地震进行矩张量反演,研究地震的震源机制,并且收集了地震序列中ML2.5以上地震的震源机制解,采用FMSI(focal mechanism stress inversion)方法反演震中区构造应力场。结果显示:松原M5.1地震的矩震级为4.9,矩心深度为6 km,双力偶分量为91.5%,主压应力P轴方位角、倾角分别为76°和3°,主张应力T轴方位角、倾角分别为166°和16°,震源机制解显示典型的构造地震特征;震中区构造应力场理论应力轴σ1方位角、倾伏角分别为88.0°和0.9°,σ2方位角、倾伏角分别为178.2°和9.6°,σ3方位角、倾伏角分别为352.5°和80.4°,这一结果与区域构造应力场一致。推断认为区域构造应力场触发了2019年松原M5.1地震活动,地震震源机制解的北西向节面与震中区附近的第二松花江断裂现今活动性质完全一致,认为第二松花断裂可能是松原M5.1地震的发震断层。

关键词: 松原M5.1地震, 震源机制解, 矩张量, 构造应力场

Abstract: Based on the digital waveform data of the regional seismic network, we inverted the seismic moment tensor solution for the Songyuan M5.1 earthquake by using the ISOLA method. Also,we inverted the stress field of the focal mechanism of the ML>2.5 events in the aftershock sequence by FMSI method. The study results show that the Songyuan M5.1 earthquake has a moment magnitude of Mw 4.9, centroid depth of 7 km, and double couple components of 91.5%. The azimuth and plunge of P-axes are 76° and 3° respectively, and those of T-axes are 166° and 16° respectively. The reduced stress tensor shows that the azimuth and plunge of σ1 are 88.0° and 0.9°, those of σ2 are 178.2° and 9.6°, and those of σ3 are 352.5° and 80.4° respectively, which agree with the region stress field. We suggest that it is the region stress field that triggered the Songyuan M5.1 earthquake, which occurred on the second Songhuajiang fault near the source region.

Key words: Songyuan M5.1 earthquake, focal mechanism solutions, moment tensor solution, tectonic stress field

中图分类号: 

  • P631.4
[1] 马国庆,孟庆发,黄大年.基于重力异常的松辽盆地构造特征识别[J].吉林大学学报(地球科学版),2018,48(2):507-516. Ma Guoqing, Meng Qingfa, Huang Danian. Structure Identification by Gravity Anomaly in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):507-516.
[2] 高金哲,李志伟,包丰,等.2006年吉林乾安-前郭M5.0级地震深度及其成因探讨[J].地球物理学进展,2013,28(5):2328-2335. Gao Jinzhe, Li Zhiwei, Bao Feng, et al. Resolving Focal Depth of the March 2006 Jilin Qian'an-Qianguo Earthquake with Multiple Datasets and Its Implication for Seismogenesis[J]. Progress in Geophysics, 2013, 28(5):2328-2335.
[3] 刘俊清,甘卫军,刘财,等.2013年吉林前郭Ms 5.5震群的双差法重新定位及震源机制[J].地震地质,2017,39(5):981-993. Liu Junqing, Gan Weijun, Liu Cai, et al. Relocations and Focal Mechanism Solotions of Ms 5.5 Qianguo Earthquake Swarm in Jilin Province in 2013[J]. Seismology and Geology, 2017, 39(5):981-993.
[4] 刘俊清,刘财,雷建设,等.2013年前郭Ms 5.8震群矩张量研究[J].地球物理学报,2017,60(9):3418-3431. Liu Junqing, Liu Cai, Lei Jianshe, et al. The Moment Tensors of the 2013 Qianguo Ms 5.8 Seismic Swarm[J]. Chinese Journal of Geophysics, 2017, 60(9):3418-3431.
[5] 李君,王勤彩,郑国栋,等.2018年5月松原Ms 5.7地震序列发震断层及应力场特征[J].地震学报,2019,41(2):207-218. Li Jun, Wang Qincai, Zheng Guodong, et al. Characteristics of Seismogenic Faults and Stress of the Songyuan Ms 5.7 Earthquake Sequence in May 2018[J]. Acta Seismologica Sinica, 2019, 41(2):207-218.
[6] 李井冈,张丽芬,廖武林,等.褶皱构造中的地震:2017年三峡库区巴东M4.3地震序列成因讨论[J].地球物理学报,2018,61(9):3701-3712. Li Jinggang, Zhang Lifen, Liao Wulin, et al. Earthquakes in the Fold Structure:The Genesis of the M 4.3 Earthquake Sequence in the Three Gorges Reservoir Area in 2017[J]. Chinese Journal of Geophysics, 2018, 61(9):3701-3712.
[7] 谢祖军,郑勇,姚华建,等.2017年九寨沟Ms7.0地震震源性质及发震构造初步分析[J].中国科学:地球科学,2018,48(1):79-92. Xie Zujun, Zheng Yong, Yao Huajian,et al. Preliminary Analysis on the Source Properties and Seismogenic Structure of the 2017Ms 7.0 Jiuzhaigou Earthquake[J]. Science China:Earth Science, 2018, 48(1):79-92.
[8] 罗钧,赵翠萍,周连庆.2013年8月香格里拉德钦-得荣Ms 5.9地震序列震源机制与应力场特征[J].地球物理学报,2015,58(2):424-435. Luo Jun, Zhao Cuiping, Zhou Lianqing. Focal Mechanisms and Stress Field of the Shangri-La Depen, Yunnan Province-Derong, Sichuan Province Ms 5.9 Earthquake Sequence in August, 2013[J]. Chinese Journal of Geophysics, 2015, 58(2):424-435.
[9] 易桂喜,龙锋,闻学泽,等.2014年11月22日康定M 6.3级地震序列发震构造分析[J].地球物理学报,2015,58(4):1205-1219. Yi Guixi, Long Feng, Wen Xueze, et al. Seismogenic Structure of the M 6.3 Kangding Earthquake Sequence on 22 Nov 2014, Southwestern China[J]. Chinese Journal of Geophysics, 2015, 58(4):1205-1219.
[10] Boyd O S, Dreger D S, Lai V H, et al. A Systematic Analysis of Seismic Moment Tensor at the Geysers Geothermal Field, California[J]. Bulletin of the Seismological Society of America, 2015, 105(6):2969-2986.
[11] Cesca S, Ali Tolga Şen, Dahm T. Seismicity Monitoring by Cluster Analysis of Moment Tensors[J]. Geophysical Journal International, 2014, 196(3):1813-1826.
[12] Liu J, Li L, Zahradník J, et al. North Korea's 2017 Test and Its Nontectonic Aftershock[J]. Geophysical Research Letters, 2018, 45(7):3017-3025.
[13] 杨宝俊,穆石敏.中国满洲里-绥芬河地学断面地球物理综合研究[J].地球物理学报,1996,39(6):772-782. Yang Baojun, Mu Shimin. Synthesized Study on the Geophysics of Manzhouli-Suifenhe Geoscience Transect, China[J]. Chinese Journal of Geophysics,1996,39(6):772-782.
[14] 卢造勋,蒋秀琴,潘科,等.中朝地台东北缘地区的地震层析成像[J].地球物理学报,2002,45(3):338-351. Lu Zaoxun, Jiang Xiuqin, Pan Ke, et al. Seismic Tomography in the Northeast Margin Area of Sino-Korean Platform[J]. Chinese Journal of Geophysics, 2002, 45(3):338-351.
[15] 单玄龙,秦树洪,张艳,等.松辽盆地北部浅部基底推覆伸展作用的地震学证据与地质意义[J].地球物理学报,2009,52(8):2044-2049. Shan Xuanlong, Qin Shuhong, Zhang Yan, et al. Seismic Evidence and Geological Significance of Thrust-Extension Structure in Upper Basement of North Songliao Basin[J]. Chinese Journal of Geophysics, 2009, 52(8):2044-2049.
[16] 吴微微,杨建思,苏金蓉,等.2013年吉林前郭-乾安震源区中强地震矩张量反演与区域孕震环境研究[J].地球物理学报,2014,57(8):2541-2554. Wu Weiwei, Yang Jiansi, Su Jinrong, et al. Monent Inversion of Moderate Earthquake and Seismogenic Environment in Qianguo-Qian'an Source Region, 2013, Jilin Province[J]. Chinese Journal of Geophysics, 2014, 57(8):2541-2554.
[17] Julian A L, Cuzner R, Oriti G, et al. Active Filtering for Common Mode Conducted EMI Reduction in Voltage Source Inverters[C]//Applied Power Electronics Conference and Exposition. New York:IEEE, 1998:934-939.
[18] Ford S R, Dreger D S, Walter W R. Network Sensitivity Solutions for Regional Moment-Tensor Inversions[J]. Bulletin of the Seismological Society of America, 2010, 100(5A):1962-1970.
[19] Davi R, Vavrycuk V. Seismic Network Calibration for Retrieving Accurate Moment Tensors[J]. Bulletin of the Seismological Society of America, 2012, 102(6):2491-2506.
[20] Zahradník J, Serpetsidaki A, Sokos E, et al. Iterative Deconvolution of Regional Waveforms and a Double-Event Interpretation of the 2003 Lefkada Earthquake, Greece[J]. Bulletin of the Seismological Society of America, 2005, 95(1):159-172.
[21] Kikuchi M, Kanamori H. Inversion of Complex Body Waves-III[J]. Physics of the Earth and Planetary Interiors, 1986, 43(3):205-222.
[22] Křížová D, Zahradník J, Kiratzi A. Possible Indicator of a Strong Isotropic Earthquake Component:Example of Two Shallow Earthquakes in Greece[J]. Bulletin of the Seismological Society of America, 2016, 106(6):2784-2795.
[23] Bouchon M. A Simple Method to Calculate Green's Functions for Elastic Layered Media[J]. Bulletin of the Seismological Society of America, 1981, 71(4):959-971.
[24] Sokos E, Zahradník J. Evaluating Centroid-Moment-Tensor Uncertainty in the New Version of ISOLA Software[J]. Seismological Research Letters, 2013, 84(4):656-665.
[25] Kagan Y Y. 3-D Rotation of Double-Couple Earthquake Sources[J]. Geophysical Journal of the Royal Astronomical Society, 1991, 106(3):709-716.
[26] Gephart J W. FMSI:A Fortran Program for Inverting Fault/Slickenside and Earthquake Focal Mechanism Data to Obtain the Regional Stress Tensor[J]. Computers & Geosciences, 1990, 16(7):953-989.
[27] Wan Y. Contemporary Tectonic Stress Field in China[J]. Earthquake Science, 2010, 23(4):377-386.
[28] Sen A T, Cesca S, Bischoff M, et al. Automated Full Moment Tensor Inversion of Coal Mining-Induced Seismicity[J]. Geophysical Journal International, 2013, 195(2):1267-1281.
[29] 邵博.隐伏活动断裂的地震危险性定量评价[D].三河:防灾科技学院,2016. Shao Bo. Quantitative Seismic Risk Evalution on Blind Active Faults[D]. Sanhe:Institute of Disaster Prevention, 2016.
[30] 李志田,赵成弼,郭梦习.第二松花江断裂活动性剖析[J].吉林地质,2002,21(1/2):15-19. Li Zhitian, Zhao Chengbi,Guo Mengxi. Analysis of the Second Songhua River Fault Activities[J]. Jilin Geology, 2002, 21(1/2):15-19.
[1] 朱传华, 王伟锋, 王青振, 李玉坤. 非均质储层三维构造应力场模拟方法[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1580-1588.
[2] 韩晓明, 刘芳, 胡博, 张帆. 河套地震带的震源机制类型时空分布特征[J]. 吉林大学学报(地球科学版), 2015, 45(2): 592-601.
[3] 陈树民,姜传金,刘立,初丽兰,裴明波. 松辽盆地徐家围子断陷火山岩裂缝形成机理[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1816-1826.
[4] 周洪福, 聂德新. 水电工程坝址区构造应力场三维数值反演[J]. J4, 2012, 42(3): 785-791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!