吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1580-1588.doi: 10.13278/j.cnki.jjuese.201605306

• 地球探测与信息技术 • 上一篇    下一篇

非均质储层三维构造应力场模拟方法

朱传华1, 王伟锋1, 王青振2, 李玉坤1   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580;
    2. 大庆油田有限责任公司第七采油厂, 黑龙江 大庆 163517
  • 收稿日期:2016-01-30 出版日期:2016-09-26 发布日期:2016-09-26
  • 作者简介:朱传华(1989-),男,博士研究生,主要从事构造地质、石油地质的研究,E-mail:zhu_chuanhua@163.com
  • 基金资助:

    国家自然科学基金项目(41340008);中央高校基本科研业务费专项资金(24720156014A)

Numerical Simulation of Structural Strain for Turbidite Sands Reservoirs of Low Permeability

Zhu Chuanhua1, Wang Weifeng1, Wang Qingzhen2, Li Yukun1   

  1. 1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. No.7 Oil Production Company, Daqing Oilfield Company Ltd., Daqing 163517, Heilongjiang, China
  • Received:2016-01-30 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by the National Science Foundation of China(41340008) and the Fundamental Research Funds for the Central Universities of China(24720156014A)

摘要:

浊积砂低渗透储层为一种重要的储层类型,因其构造形态复杂、非均质性强等特点,极易导致其内部构造应力场异常分布;准确计算该类型储层的应力场分布、识别构造应力场异常区,对低渗透油藏的开发具有重要的指导意义。本次研究中,首先,在PETREL系统中依次建立浊积砂储层构造模型、浊积砂储层沉积微相模型和浊积砂储层层速度模型,并根据纵横波速度转换关系、纵横波速度与动态岩石力学参数转换关系、动静态岩石力学参数转换关系,由浊积砂储层层速度模型计算得到三维岩石力学参数模型;其次,将PETREL系统中的浊积砂储层构造模型转换为ANSYS系统中的浊积砂储层几何模型,解决浊积砂储层构造形态复杂的问题;然后,进行网格划分,并按照“距离扫描法”将三维岩石力学参数加载到浊积砂储层ANSYS有限元分析模型中,从而解决“非均质性强”的问题;最后,根据浊积砂储层区域构造背景及单井实测的地应力状态,设置初始边界条件和负载,进行计算。井点实测应力值和应力方向的检验表明,模拟结果准确可靠,能够体现出受浊积砂储层构造形态和储层非均质性影响而引起的局部构造应力场的异常。

关键词: 三维构造应力场模拟, 浊积砂储层, 低渗透储层, PETREL与ANSYS联合建模, 东营凹陷

Abstract:

The Boxing depression where Palaeogene low-permeability sandstone reservoirs (LPSR) are widely distributed is an important oil-bearing depression in Bohai bay basin. Influenced by multi-stage tectonic inversions and reservoir hererogeneities, the stress field of these reservoirs is so complex that hydraulic fracturing according to results obtained in the simulation method for homogeneity reservoirs is of no avail. In this paper, to improve the accuracy of stress field simulation of heterogeneous reservoirs, the simulation method was mainly modified in three aspects: structure model, rock mechanics parameters (RMP) and boundary constrains. ① The structure and interval velocity models with PETREL was built. The interval velocity model built in the way of facies-controlled modeling can include all the heterogeneity features of the LPSR, such as, facies, lithology, physical properties and so on. ② The reverse engineering of cloud data was used to transfer the PETREL structure model into the ANSYS mechanical model. ③ The relation of the interval velocity and RMP in the study area were calculated, and the PETREL interval velocity model was translated into the RMP model. So, the RMP in every element of the ANSYS mechanical model was got. ④ Boundary constrains were inverted by the stress of fractured wells which were evenly distributed in the study area. After the result was carried out, we examined it with the stress of reserved fractured wells and found it was reliable.

Key words: 3D numerical simulation of structural strain, turbidite sand reservoir, heterogeneous reservoir, joint modeling of PETREL and ANSYS, Dongying depression

中图分类号: 

  • P631.4

[1] 蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1):13-18. Jiang Lingzhi, Gu Jiayu, Guo Bincheng. Characteristics and Mechanism of Low Permeability Clastic Reservoir in Chinese Petroliferous Basin[J]. Acta Sedimentologica Sinica, 2004,22(1):13-18.

[2] 杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-61. Yang Xiaoping, Zhao Wenzhi, Zou Caineng, et al. Origin of Low-Permeability Reservoir and Distribution of Favorable Reservoir[J]. Acta Petrolei Sinica, 2007, 28(4):57-61.

[3] 曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征[J]. 石油学报,1994,15(1):38-46. Zeng Daqian, Li Shuzhen. Types and Characteristics of Low Permeability Sandstone Reservoirs in China[J]. Acta Petrolei Sinica, 1994,15(1):38-46.

[4] 唐治,潘一山,阎海鹏,等.基于ANSYS的二维地应力场的分析[J]. 科学技术与工程,2010,10(28):6926-6929. Tang Zhi, Pan Yishan, Yan Haipeng, et al. Analysis of Two Dimensional Atress Field Based on ANSYS[J]. Science Technology and Engineering, 2010, 10(28):6926-6929.

[5] 刘显太,戴俊生,徐建春,等.纯41断块沙四段现今地应力场有限元模拟[J].石油勘探与开发,2003,30(3):126-128. Liu Xiantai, Dai Junsheng, Xu Jianchun, et al. FEM Simulation Modern Crustal Stress Field of 41 Fault Block Shasiduan[J]. Petroleum Exploration and Development, 2003, 30(3):126-128.

[6] 戴黎明,李三忠,楼达,等.亚洲大陆主要活动块体的现今构造应力数值模拟[J].吉林大学学报(地球科学版), 2013,43(2):469-483. Dai Liming, Li Sanzhong, Lou Da, et al. Numerical Modeling of Present-Day Structural Stress of Major Active Blocks in the Asian Continent[J]. Journal of Jilin University (Earth Science Edition), 2013,43(2):469-483.

[7] 戴俊生, 王霞田, 季宗镇,等.高邮凹陷南断阶东部阜宁期构造应力场及其对断层的控制作用[J].中国石油大学学报(自然科学版), 2011, 35(2):1-5. Dai Junsheng, Wang Xiatian, Ji Zongzhen, et al. Structural Stress Field of Funing Sedimentary Period and Its Control on Faults in the East of South Fault Terrace in Gaoyou Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2):1-5.

[8] 冯立,张学婧.海拉尔盆地三维地应力场数值模拟[J].大庆油田地质与开发,2011,30(2):115-119. Feng Li, Zhang Xuejing. Numerical Simulation of Three Dimensional Crustal Stress Field in Hailaer Basin[J]. Daqing Petroleum Geology and Development,2011,30(2):115-119.

[9] 张广明,熊春明,刘合,等.复杂断块地应力数值模拟方法研究[J].断块油气田,2011,18(6):710-713. Zhang Guangming, Xiong Chunming, Liu He, et al. Study on Numerical Simulation Method for Complex Fault-Block Crustal Stress[J]. Fault-Block Oil and Gas Field, 2011,18(6):710-713.

[10] 曾联波,肖淑蓉,罗安湘.陕甘宁盆地中部靖安地区现今应力场三维有限元数值模拟及其在油田开发中的意义[J].地质力学学报,1998,4(3):58-62. Zeng Lianbo, Xiao Shurong, Luo Anxiang. 3D Finite Element Numerical Simulation of Modern Stress Field in the Jing'an of Central Shan-Gan-Ning Basin and Its Significance in Oil Field Development[J]. Journal of Geomechanics,1998,4(3):58-62.

[11] 沈海超,程远方,王京印,等.断层对地应力场影响的有限元研究[J].大庆石油地质与开发,2007,2(26):34-37. Shen Haichao, Cheng Yuanfang, Wang Jingyin, et al. Finite Element Analysis About the Effect of Faults on Crustal Stress Field[J]. Daqing Petroleum Geology and Development, 2007, 2(26):34-37.

[12] 刘建华,朱玉双,胡友洲,等.安塞油田H区开发中后期储层地质建模[J].沉积学报,2007,25(1):110-115. Liu Jianhua, Zhu Yushuang, Hu Youzhou, et al. Reservoir Modeling for Middle or Later Step of Exploitation in H Area of Ansai Oilfield[J]. Acta Sedimentologica Sinica, 2007, 25(1):110-115.

[13] 刘文岭.地震约束储层地质建模技术[J]. 石油学报,2008,29(1):64-68,74. Liu Wenling. Geological Modeling Technique for Reservoir Constrained by Seismic Data[J]. Acta Petrolei Sinica, 2008, 29(1):64-68,74.

[14] Bourgault G. Using Non-Gaussian Distributions in Geo-statistical Simulations[J]. Mathematical Geology, 1997, 29(3):315-334.

[15] Castagna J P, Batzle M L, Eastwood R L. Relationships Between Compressional Wave and Shear Wave Velocities in Clastic Silicate Rocks[J]. Geophysics, 1985, 50(5):571-581.

[16] Han D H, Nur A, Morgan D. Effects of Porosity and Clay Content on Wave Velocities in Sand Stones[J]. Geophysics, 1986, 51(11):2093-2107.

[17] 李敬功.利用常规测井资料计算气藏横波波速[J].岩性油气藏,2007,19(2):67-70. Li Jinggong. Calculation of Gas Reservoir Transverse Wave Speed Using Conventional Logging Data[J]. Lithologic Oil-Gas Reservoirs, 2007,19(2):67-70.

[18] 郭栋,印兴耀,吴国忱.横波速度计算方法与应用[J].石油地球物理勘探,2007,42(5):535-538. Guo Dong, Yin Xingyao, Wu Guochen. Transverse Wave Speed Calculation Method and Application[J]. Petroleum Geophysical Exploration, 2007,42(5):535-538.

[19] 张小庆,桂志先.岩石中纵横波波速关系研究[J].石油天然气学报,2006,28(4):255-257. Zhang Xiaoqing, Gui Zhixian. Study on Relationship Between Vertically and Horizontally Wave in the Rock[J]. Journal of Oil and Gas Technology,2006,28(4):255-257.

[20] Montmayeur H, Graves R M. Prediction of Static Elastic/Mechanical Properties of Consolidated and Unconsolidated Sands from Acoustic Measurements:Correlations[C]//SPE Annual Technical Conference and Exhibition. New Orlands:Society of Petroleum Engineers, 1986.

[21] Yale D P, Jamieson W H. Static and Dynamic Rock Mechanical Properties in the Hugo Ton and Panoma Field, Kansas[C]//SPE Mid-Continent Gas Symposium.Amarillo:Society of Petroleum Engineers, 1994.

[22] 林英松,葛洪奎,王顺昌.岩石动静力学参数的试验研究[J].岩石力学与工程学报,1998,17(2):216-222. Lin Yingsong, Ge Hongkui, Wang Shunchang. Experimental Study of Dynamic and Static Rock Mechanics Parameters[J]. Rock Mechanics and Engineering, 1998, 17(2):216-222.

[23] 马中高.碎屑岩地震岩石物理学特征研究[D].成都:成都理工大学, 2008. Ma Zhonggao. Study on the Rock Physics Properties of Clastic Formation[D]. Chengdu:Chengdu University of Technology, 2008.

[24] 刘伟, 王新海, 汪忠德, 等. 济阳坳陷基山砂岩体分层地应力模型优选及岩石力学参数研究[J]. 石油天然气学报, 2008,(3):187-189. Liu Wei, Wang Xinhai, Wang Zhongde, et al. Analysis on the Optimal Layering Earth Stress and Mechanic Parameters of Jishan Sand Body in Jiyang Depression[J]. Journal of Oil and Gas Technology, 2008(3):187-189.

[25] 时华星,曹建军,伍向阳,等.济阳坳陷下第三系岩石地震波传播速度分析[J].油气地质与采收,2004,11(4):28-30. Shi Huaxing, Cao Jianjun, Wu Xiangyang, et al. Analysis Seismic Wave Speed of Eogene Rocks in Jiyang[J]. Petroleum Geology and Recovery, 2004,11(4):28-30.

[26] 赵庆. 应用压裂资料计算地应力的一种方法[J]. 河南石油, 2005, 19(1):43-45. Zhao Qing. A Method for Calculating the Crustal Strain Based on Fracturing Well Data[J]. Henan Petroleum, 2005, 19(1):43-45.

[27] 许赛男, 黄小平. 应用测井资料计算地应力以及地层破裂压力:以库车坳陷克拉A井解释为例[J]. 内蒙古石油化工, 2007, 32(11):105-107. Xu Sainan, Huang Xiaoping. Apply Logging Data to Estimate In-Situ Stress and Formation Fracture Pressure[J]. Inner Mongulia Petrochemical Industry, 2007, 32(11):105-107.

[28] Voegele M D, Abou-Sayed A S, Jones A H. Optimiza-tion of Stimulation Design Through the Use of In-Situ Stress Determination[J]. Journal of Petroleum Technology, 1983, 35(6):1071-1081.

[1] 贾艳聪, 操应长, 林畅松, 王健. 东营凹陷博兴洼陷沙四上亚段滩坝优质储层形成机理与分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 652-664.
[2] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[3] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[4] 贾珍臻, 林承焰, 任丽华, 董春梅, 宫宝. 苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1624-1636.
[5] 赵利, 李理, 董大伟. 基于小波变换的盆地沉积-构造波动分析[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1227-1236.
[6] 马奔奔, 操应长, 王艳忠, 刘惠民, 高永进. 东营凹陷盐家地区沙四上亚段砂砾岩储层岩相与物性关系[J]. 吉林大学学报(地球科学版), 2015, 45(2): 495-506.
[7] 王淑萍,徐守余,董春梅,王丽萍,刘春平. 东营凹陷民丰洼陷北带沙四下亚段深层天然气储层成岩作用[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1747-1759.
[8] 郭佳,曾溅辉,宋国奇,张永旺,王学军,孟伟. 东营凹陷中央隆起带烃类流体活动在成岩作用上的响应[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1123-1133.
[9] 王艳忠,操应长,葸克来. 次生孔隙发育带的概念及石油地质意义新认识[J]. 吉林大学学报(地球科学版), 2013, 43(3): 659-668.
[10] 刘华,蒋有录,徐浩清,宋国奇,蔡东梅. 东营凹陷民丰地区深层裂解气藏成因类型与成藏模式[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1638-1646.
[11] 田继军, 姜在兴. 惠民凹陷与东营凹陷沙四上亚段滩坝沉积特征对比与分析[J]. J4, 2012, 42(3): 612-0623.
[12] 常象春, 韩作振, 鄢程鹏. 东营凹陷南斜坡沙四段混源油地球化学与成藏特征[J]. J4, 2012, 42(3): 672-680.
[13] 杨勇强, 邱隆伟, 姜在兴, 白凤坤. 东营凹陷沙四上亚段滩坝物源体系[J]. J4, 2011, 41(1): 46-53.
[14] 张永旺,曾溅辉,高 霞,周士赢. 东营凹陷古近系储层碳酸盐胶结物分布特征及主控因素[J]. J4, 2009, 39(1): 16-0022.
[15] 王建伟, 宋国奇,宋书君,赵密福,高侠. 东营凹陷南斜坡孔店组原油地球化学特征及其来源[J]. J4, 2008, 38(1): 56-0062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!